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Abstract

In visual cryptography, each share must appear statis-
tically indistinguishable from noise. The first share is
generated using a pseudorandom number generator; the
second one is constructed based on the first one and the
image to be encoded. This is true for black-and-white,
gray, and color versions of the scheme. In previous work,
we proposed a method for generating the second share
that preserves essential encoding constraints while aim-
ing to maintain the statistical randomness of the first
share. To assess the randomness of shares by applying
typical randomness tests (NIST STS) we simulate hun-
dreds of share samples and analyze the resulting p-value
distributions. This simulation enables us also to test the
uniformity of distributions visually. In this study, we ex-
tend our assessment by testing for deviation of these dis-
tributions from uniformity using Kolmogorov–Smirnov
and chi-squared tests. Results of simulations indicate
that our method preserves randomness in the second
share to a degree comparable to that of the first one,
supporting its use in statistically robust visual encryp-
tion of color images.

Introduction

Randomness is a cornerstone of cryptographic security.
It underpins not only key generation and protocol unpre-
dictability, but also structural concealment in schemes
such as visual cryptography (VC). In VC, a secret im-
age is divided into multiple binary shares which reveal
the secret image when overlayed and viewed by bare
eye. Shares, when viewed individually, must reveal no
meaningful information. This concealment depends not
merely on logical irreversibility, but on statistical indis-
tinguishability. In fully random cryptography schemes
each share must resemble uniform random noise. Other
possibilities are that shares simply represent no useful
information, or mimic images which contain irrelevant
views (Dhiman and Kasana 2018).

In classical schemes, the first share is expected to be ran-
dom. A physical random process could be used to this
aim; however, in practice the random process is simu-
lated with a pseudorandom number generator (PRNG).
The second share is computed to two separately desir-
able targets. First it is of a utmost importance to satisfy
the reconstruction constraints to a largest possible ex-
tent. Second, the simulation of randomness of the sec-
ond share is also a target. As a result, while the first
share reflects the statistical properties of the PRNG, the
second one may contain artifacts introduced by the en-
coding algorithm. If these artifacts introduce patterns
detectable by statistical means, the concealment may
be compromised – not visually, but analytically. In pre-
vious work, we proposed a method for generating the
second share that minimizes such distortion. Our con-
struction modifies the second share in a controlled man-
ner, introducing the information necessary for decoding,
while attempting to maintain the original randomness.
Informally, the second share should “look just as ran-
dom” as the first one, even though it is not indepen-
dently sampled.

Preliminary visual and histogram-based analy-
ses (Chmielewski, Nieniewski, and Orłowski 2022a)
suggested that this goal might be achievable: p-values
from standard randomness tests (e.g., rank, longest run)
applied to sets of shares were broadly well-distributed,
with few values falling below conventional significance
thresholds. However, such observations, while sugges-
tive, lack formal statistical confirmation (cf. (James
1995)).

In this paper, we address this gap. For a given im-
age, we simulate the process of multiple uses of the
algorithm by generating 100 random instances of the
first share (with PRNG) and derive corresponding sec-
ond shares using our method. Each share, treated as
a one-dimensional series of bits that represent pixels
read by rows or by columns, is tested using a battery
of randomness tests (NIST Statistical Test Suite, NIST
STS (Bassham, Rukhin, Soto, Nechvatal, Smid, Leigh,
Levenson, Vangel, Heckert, and Banks 2010)), and the
resulting p-values are aggregated. We analyze these p-
value vectors in two ways: (1) by counting how many
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fall below a fixed rejection threshold (α = 0.01) (as
in (Chmielewski, Nieniewski, and Orłowski 2022a)) and
(2) by testing their histogram for deviations from uni-
formity using the Kolmogorov–Smirnov and chi-squared
tests. This second-order statistical analysis, i.e., treat-
ing p-value distributions as objects of inference, enables
a more rigorous evaluation of the method’s ability to
preserve randomness. Our findings suggest that the sec-
ond shares exhibit no statistically significant degrada-
tion in randomness relative to the first ones, indicating
that a controlled transformation with random as well as
deterministic elements need not compromise statistical
concealment in visual cryptography.
Surprisingly enough, statistically testing the shares
in color visual cryptography was not widely applied.
In (Ulutas, Yazici, Nabiyev, and Ulutas 2008) shares
were tested with the correlation-based tools. Recently,
several authors (Toktas, Erkan, and Yetgin 2024; Tang,
Lu, Zhang, Huang, Huang, and Wang 2024; Liu and
Ding 2024) tested the security of key-based ciphers for
images with NIST STS, but their methods had no re-
lation to purely visual cryptography in which bare eye
would be enough to reveal the secret image by overlaying
the shares.

Visual coding algorithms

In first visual cryptography of black-and-white images
each pixel of an image was represented by a 2×2 tile.
The shares were not random but had a structure which
made it possible to represent pixels at two levels: bright
(half-white) and dark (black) (Naor and Shamir 1995).
For representing images with more shades of grey the
dithering techniques were used (see for example (Stin-
son and Paterson 2018)). For color images, also the
dithering schemes with additive as well as subtractive
basic colors were used (Yang and Chen 2008; Dhiman
and Kasana 2018). We go along the same path, but as
the starting point we take an entirely random tile, as
far as the random number generator can be considered
as actually simulating the randomness correctly. So, the
tile is in no way crafted for the coding process.
The R, G, B and K pixels in it are taken form a ran-
dom integer number generator in {0, 1, 2, 3}. Through-
out this paper 6 × 6 tiles are used, each representing
one color pixel in the coded secret, which is a compro-
mise between the restored image quality and pixel ex-
pansion. For each pixel, hence a tile, the information
on the numbers of R, G, B and K (blacK) pixels that
need to be represented come from the dithering process:
these are the reconstruction constraints. Now, there are
two concepts of coding to meet these constraints. We
shall concentrate on a single pixel in a pair of tiles, in
share 1 and 2. The process is strictly pixelwise parallel.

Coding by hiding: the tiles in the two shares are orig-
inally identical, so all the pixels are initially un-

covered. By swapping the pixels, by pairs, in the
share 2, with the pairs selected random, cover-
ing the unnecessary pixels is attempted, to meet
the reconstruction constraints as closely as possible
(see (Chmielewski, Nieniewski, and Orłowski 2021)
for details).

Coding by unhiding: the tile 2 is formed by choosing
for each pixel a color different from that in tile 1,
at random, so all the pixels are initially covered
(other simple ways to get a random share 2 with
all pixels covered exist). By swapping the pixels,
by pairs, in the share 2, with the pairs selected
at random, uncovering the necessary pixels is at-
tempted to meet the reconstruction constraints as
closely as possible (see (Chmielewski, Nieniewski,
and Orłowski 2022b) for details).

Let us note that each color, not only black, can hide
any other color, due to that overlaid color shares are
transparent narrow-band filters.
The pixels in share 2 are only swapped, or randomly
generated and swapped, so it is aimed to preserve their
statistical randomness while encoding the secret image.
In both algorithms errors occur due to that the tiles
are random, not engineered for the errorless operation
of the algorithms. There are not enough color pixels
or some pixels cannot be covered due to lack of enough
pixels in another color in share 2. An example of coding
and decoding is shown in Figure 1 (fragment of a figure
from (Chmielewski, Nieniewski, and Orłowski 2022a),
according to licence). In coding by unhiding, the sur-
plus bright pixels can be easily avoided, but the lack of
enough color pixels to appear unhidden can occur more
frequently than in the coding by unhiding (Chmielewski,
Nieniewski, and Orłowski 2022a). For typical data, the
coding by hiding is more appropriate, so this method
will be considered further in this paper. In Figure 2 an
example of decoding a natural image is shown. It can
be marginally noticed that the quality attainable with
bare eye, for example in field conditions, is very lim-
ited, which is typical for this class of decoding methods,
while it is possible to greatly enhance the image qual-
ity with very simple computations (see (Chmielewski,
Nieniewski, and Orłowski 2022a)).

Materials and methods

For each tested image, we generated 100 independent
instances of the share 1 using a default pseudorandom
number generator. Each corresponding share 2 was com-
puted using the method described above. Both shares
were treated as binary data and subjected to statisti-
cal randomness evaluation using a standard test suite
(NIST STS). For each share, and for each test, we ob-
tained a single p-value indicating the degree to which
the observed result is consistent with the null hypoth-
esis of randomness. This produced, per image and per
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Figure 1: Decoding for a Test Image test100c.
(a) Original, 100×40. (b) Decoded 600×240 with the
hiding method. (d) Decoded 600×240 with the unhiding
method. (c) Share 2, a random image

test, a vector of 100 p-values for Share 1 and 100 for
Share 2, each in two versions: read by rows and read by
columns, so there are four sets of data for each tested
image. We tested six images frequently used as bench-
marks: baboon (quarter edge size), parrots (half edge
size), peppers, Lena, Boats and test100c, a small test
image used in our previous papers (Chmielewski, Nie-
niewski, and Orłowski 2022a). There are 15 tests in the
NIST STS, some with subtests, which gives 188 tests
(default values of parameters were used, unless stated
otherwise). In total, there were 4512 independent re-
alizations, or samples, of p-value vectors, 100 elements
each vector.
Two levels of analysis were performed on these samples
of p-value vectors, each vector constituting a histogram:

Rejection count: the number of p-values falling below
a fixed significance threshold (α = 0.01). This test
(p-v) quantifies how often a given test would flag a
sample as non-random under standard criteria.

Uniformity tests: the distribution of p-values was
tested for consistency with the uniform distribu-
tion U(0, 1) using both the Kolmogorov–Smirnov
(K-S) test and Pearson’s chi-squared (χ2) test. This
meta-analysis treats the p-values themselves as data
to evaluate second-level randomness.

Results

Across all images and tests, both share 1 and share 2 ex-
hibited low rejection rates, with the number of p-values
below 0.01 typically within the expected range under the
null hypothesis. In particular, share 2 did not display
systematically higher rejection counts than share 1.
Histogram-based uniformity assessments yielded simi-
larly positive outcomes. In the majority of cases, nei-
ther the KS test nor the chi-squared test rejected the
null hypothesis of uniformity of the p-value histogram
at the 0.05 level. Where rejections did occur, they were
scattered and statistically compatible with type I error
rates. Figure 3 (fragment of a figure from (Chmielewski,
Nieniewski, and Orłowski 2022a), according to licence)

presents representative p-value histograms for a single
test (Rank) across 100 share 1 and share 2 instances,
each by rows and by columns, illustrating their visual
similarity. More histograms, also for a method without
the randomness property, can be seen in (Chmielewski,
Nieniewski, and Orłowski 2022a).
Tables 1, 2 and 3 summarize p-v, K-S and χ2 tests
for some of the many possible image-test-share-direction
combinations, confirming the absence of systematic re-
jections and their generally marginal counts among the
4512 samples of the p-value histograms.
Not all the tests revealed failures. Number of non-
randomness cases detected by NIST tests are shown
in Table 4 for both methods (test names were abbrevi-
ated to reduce table width). The OverlappingTemplate
opens the ranking for both methods. Other tests re-
vealed much less failures. It can be observed that
some tests detected no failures at all; these were:
ApproximateEntropy, CumulativeSums 2, Linear-
Complexity, Rank, Runs, Universal, and some subtests
of NonOverlappingTemplate, RandomExcursions and
RandomExcursionsVariant.
These results indicate that the mixed random and de-
terministic transformations applied to generate share 2
do not introduce detectable structure that would be re-
vealed by typical randomness tests. In particular, the
p-value distributions of share 2 are statistically indistin-
guishable from those of share 1, both in rejection fre-
quency and in second-order uniformity.

Discussion

The primary aim of this study was to assess whether
the transformation used to encode information in the
second share of a visual cryptographic pair necessarily
degrades the statistical appearance of randomness.
Our findings suggest that it does not. Across a wide
range of images and tests, the second shares generated
using our method passed standard randomness assess-
ments at rates comparable to purely random first shares.
Neither rejection counts nor p-value distributions indi-
cated systematic anomalies.
These results provide evidence that a carefully designed
mixed random and deterministic transformation can
preserve the statistical noise characteristics essential for

Table 1: Rejections by Test
Test Share 1 Share 2 Rows Cols Fails/Samps

Hiding method
p-v 43 36 45 34 79/4512
K-S 16 29 16 29 46/4512
χ2 19 27 23 23 46/4512

Unhiding method
p-v 49 51 49 51 100/4512
K-S 16 20 21 15 36/4512
χ2 24 25 28 21 49/4512
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Figure 2: Decoding for a Natural Image boats. (a) Original, 787×576. (b) Decoded 4722×3456 with the hiding
method. (c) Share 2, upper left quarter, a random image
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Figure 3: Histograms of 400 p-values for Test Rank, Im-
age boats, Hiding Method. Marks: bright full: share 1,
dark empty: share 2, circles: by rows, bars: by columns;
red: 9 rejections total

Table 2: Rejections in Test Combinations
Test Counts/4512 Samples

Hiding method
Single p-v: 79 KS: 41 χ2: 46
Pairs p-v, K-S: 8 p-v, χ2: 9 K-S, χ2: 14
3-tuple p-v, K-S, χ2: 7

Unhiding method
Single p-v: 100 KS: 36 χ2: 49
Pairs p-v, K-S: 9 p-v, χ2: 9 K-S, χ2: 13
3-tuple p-v, K-S, χ2: 7

Table 3: Rejections by Shares/Directions
Case Counts/4512 Samples

Hiding method
By shares Share 1: 69 Share 2: 73 Both: 8
By directions Rows: 74 Columns: 68 Both: 6

Unhiding method
By shares Share 1: 77 Share 2: 84 Both: 7
By directions Rows: 83 Columns: 78 Both: 9

the security of visual cryptography. Importantly, this
holds not only at the level of individual tests, but also
in aggregate behavior: the p-value distributions them-
selves remain uniform, suggesting that the transforma-
tion does not bias or constrain the randomness land-
scape.
From a methodological standpoint, this study demon-
strates the utility of meta-level randomness evaluation,
i.e., treating p-value vectors as analyzable objects. This
approach adds a layer of robustness beyond pass/fail
summaries, enabling the detection of subtle statistical
distortions that may not manifest as outright rejections.
Finally, the use of two independent statistical environ-
ments (Python and R) for validation strengthens the re-
liability of the results and minimizes the risk of software-
related bias.

Conclusion

In this paper, we analyzed whether the generation of
the second share in visual cryptography compromises
its statistical randomness. Using standard randomness
tests and second-order evaluations of p-value distribu-
tions, generated in a simulated experiment, we found
no evidence of such degradation. Our method for con-
structing the second share produces outputs that, de-
spite being algorithmically constrained, remain statis-
tically indistinguishable from noise. This confirms its
suitability for secure visual encryption and demonstrates
that controlled determinism can coexist with apparent
randomness. More broadly, our work shows that meta-
analysis of test outputs provides a powerful tool for val-
idating the integrity of cryptographic structures under
transformation.
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