

Both Shares in Color Visual Cryptography Can Be Statistically Indistinguishable from Noise

Leszek J Chmielewski¹, Mariusz Nieniewski³ and Arkadiusz Orłowski^{1,2}

¹ Warsaw University of Life Sciences – SGGW, Institute of Information Technology

² Military University of Technology – WAT, Institute of Mathematics and Cryptology
Warszawa, Poland

³ University of Łódź, Faculty of Mathematics and Informatics
Łódź, Poland

ESM'2025

Ghent, Belgium, October 22-24, 2025

Contents

1 Introduction

2 Coding with tiles and segments

3 Errors

4 Are the shares truly random?

5 Results of tests

6 Conclusion

Cryptography and steganography

- Cryptography has been the subject of interest at least for several centuries
- Steganography, its branch: hiding a secret message in another, overt message
- Overt message is intended to hide the secret message, but it also distracts the third parties from the fact that something is hidden
- Even if the coding is unbreakable, it is still susceptible to the simplest attack – the cutoff of the transmission channel
- Therefore, hiding not only the secret, but also the fact that a transmission takes place, is of great value
- Transmitting a structured but unreadable message evokes interest of the third parties
- Our world is full of noise, so noise does not attract too much attention
- A concept of coding a color image in **pure noise** will be presented
- In the literature, little or no attention was paid to true randomness of shares; usually shares were described as *looking random*

Cryptography and steganography

- Cryptography has been the subject of interest at least for several centuries
- Steganography, its branch: hiding a secret message in another, overt message
- Overt message is intended to hide the secret message, but it also distracts the third parties from the fact that something is hidden
- Even if the coding is unbreakable, it is still susceptible to the simplest attack – the cutoff of the transmission channel
- Therefore, hiding not only the secret, but also the fact that a transmission takes place, is of great value
- Transmitting a structured but unreadable message evokes interest of the third parties
- Our world is full of noise, so noise does not attract too much attention
- A concept of coding a color image in **pure noise** will be presented
- In the literature, little or no attention was paid to true randomness of shares; usually shares were described as *looking random*

Cryptography and steganography

- Cryptography has been the subject of interest at least for several centuries
- Steganography, its branch: hiding a secret message in another, overt message
- Overt message is intended to hide the secret message, but it also distracts the third parties from the fact that something is hidden
- Even if the coding is unbreakable, it is still susceptible to the simplest attack – the cutoff of the transmission channel
- Therefore, hiding not only the secret, but also the fact that a transmission takes place, is of great value
- Transmitting a structured but unreadable message evokes interest of the third parties
- Our world is full of noise, so noise does not attract too much attention
- A concept of coding a color image in **pure noise** will be presented
- In the literature, little or no attention was paid to true randomness of shares; usually shares were described as *looking random*

Classic Visual Cryptography (VC)

Secret image

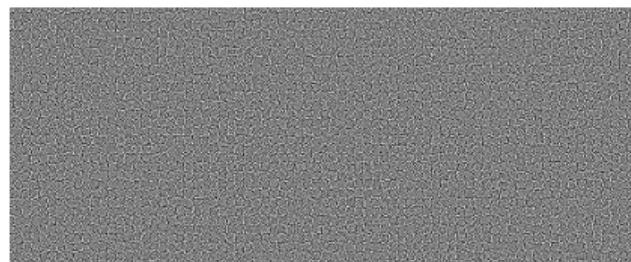
Details will be presented further

Concept: (Naor and Shamir 1995; Naor and Shamir 1997). Images: (Orłowski and Chmielewski 2019a).

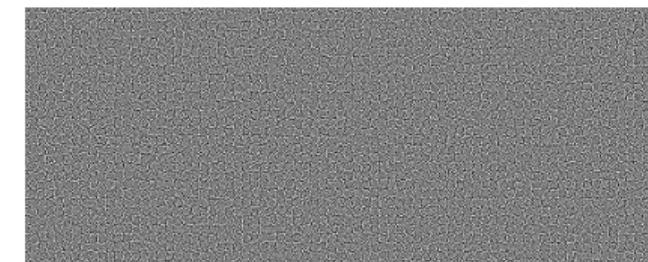
Classic Visual Cryptography (VC)

Secret image

↓ coding in two *shares*



+

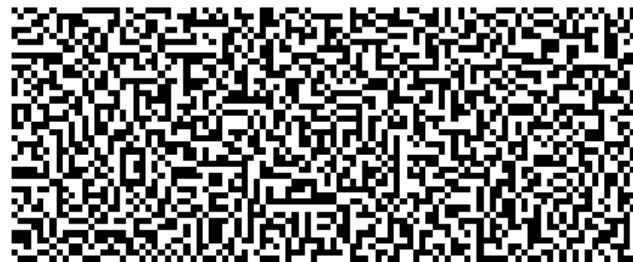


Neither *share* contains information on the secret, but their structure is specific
Details will be presented further

Concept: (Naor and Shamir 1995; Naor and Shamir 1997). Images: (Orłowski and Chmielewski 2019a).

Classic Visual Cryptography (VC)

↓ coding in two shares

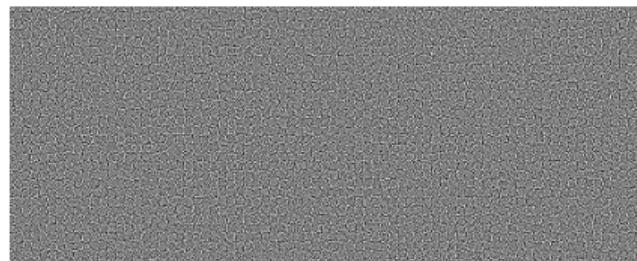
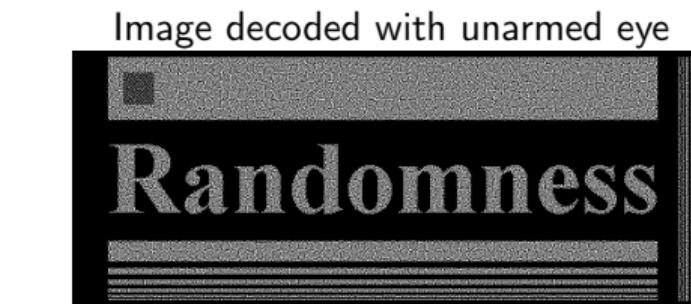


+

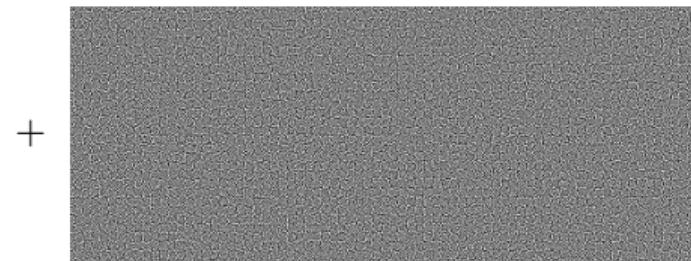
Neither *share* contains information on the secret, but their structure is specific (UL corn. $\times 10$)
Details will be presented further

Classic Visual Cryptography (VC)

↓ coding in two *shares*



↑ decoding by simply overlaying



Neither *share* contains information on the secret, but their structure is specific
Details will be presented further

Meaningful shares

One of the concepts of distracting the third party from the coding process is *meaningful shares*

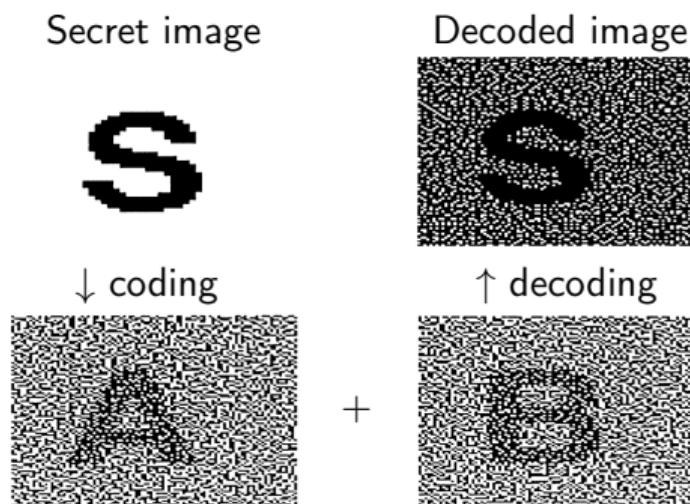
Secret image

Advanced mathematical theory, high quality color methods and multi-participant schemes exist

Concept, images: (Ateniese, Blundo, Santis, and Stinson 2001). Extensions: see e.g. (Dhiman and Kasana 2018).

Meaningful shares

One of the concepts of distracting the third party from the coding process is *meaningful shares*



Shares contain images irrelevant to the secret; their structure is still specific

Advanced mathematical theory, high quality color methods and multi-participant schemes exist

Concept, images: (Ateniese, Blundo, Santis, and Stinson 2001). Extensions: see e.g. (Dhiman and Kasana 2018).

Random shares in black-and-white

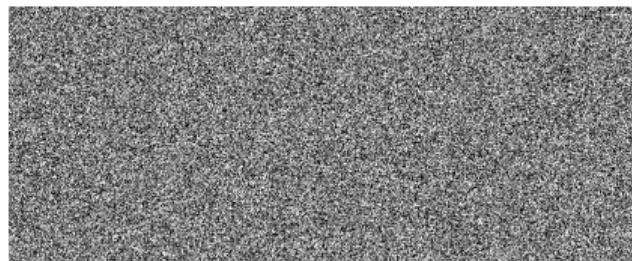
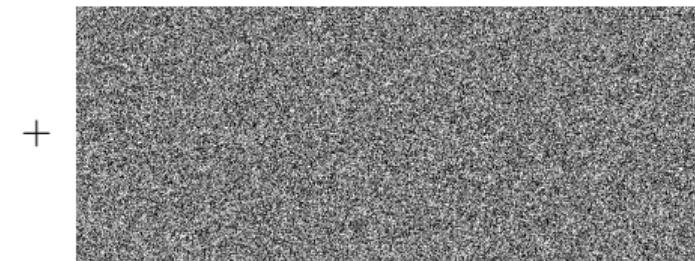
Secret image

Details will be presented further

Random shares in black-and-white

Secret image

↓ coding



Neither share contains information on the secret; **their contents is random**
Details will be presented further

Random shares in black-and-white

Secret image

↓ coding

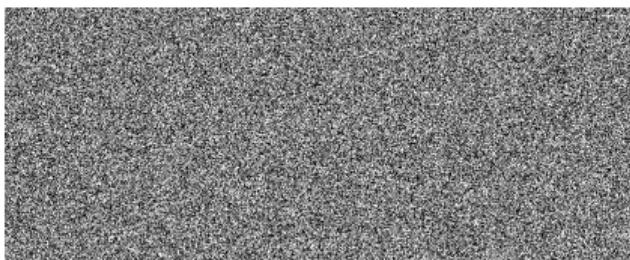
+

Neither share contains information on the secret; **their contents is random** (UL corn. $\times 10$)
Details will be presented further

Random shares in black-and-white

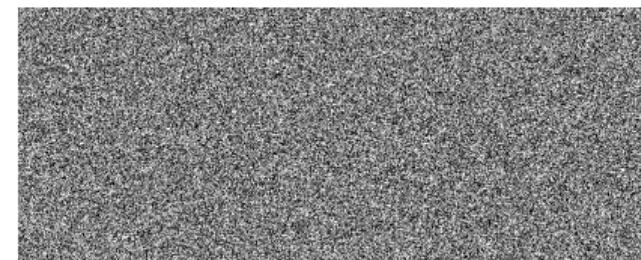
Secret image

↓ coding



Decoded, with inevitable errors

↑ decoding

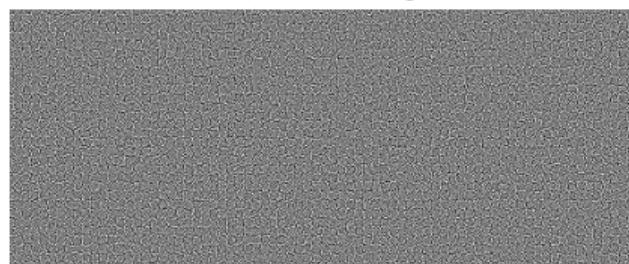


Neither share contains information on the secret; their contents is random
Details will be presented further

Errors caused by randomness

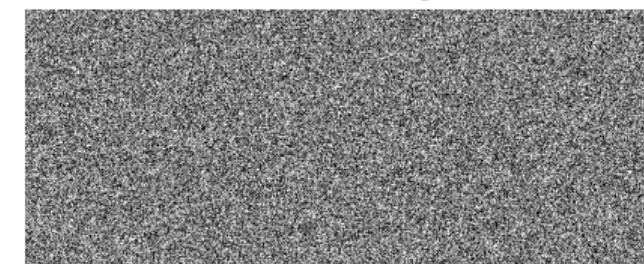
Decoded classically, no errors

↑ decoding



Decoded randomly, with errors

↑ decoding



Neither share contains information on the secret; their contents is random
Details will be presented further

Errors caused by randomness

Decoded classically, no errors

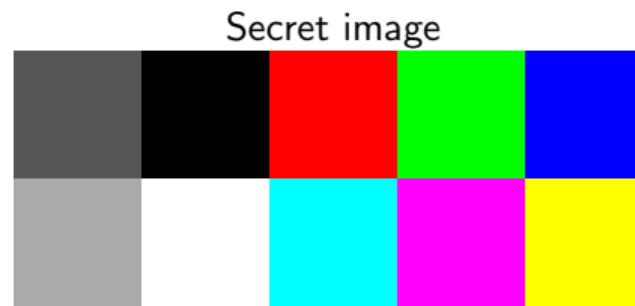
↑ decoding

Decoded randomly, with errors

↑ decoding

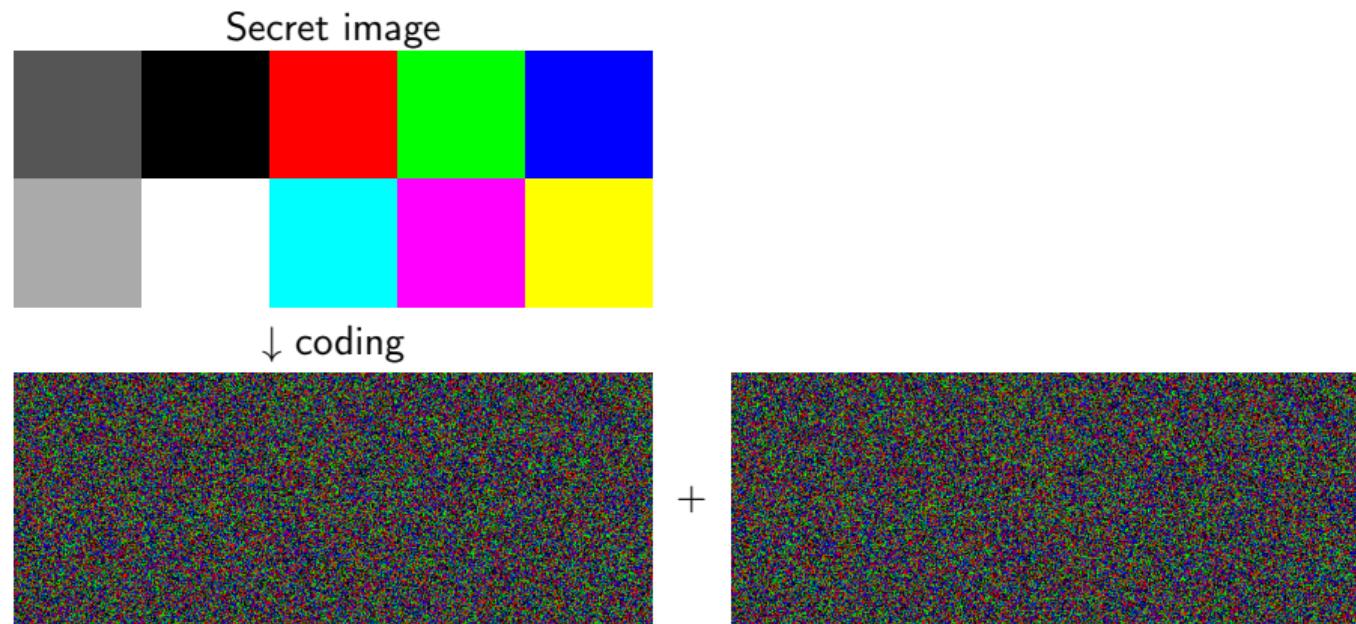
Neither *share* contains information on the secret; **their contents is random** (UL corn. $\times 10$)
Details will be presented further

Random shares in color



Details will be presented further

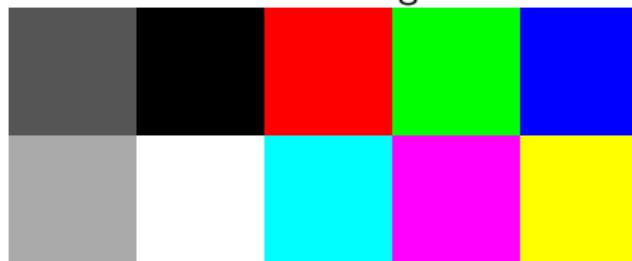
Random shares in color



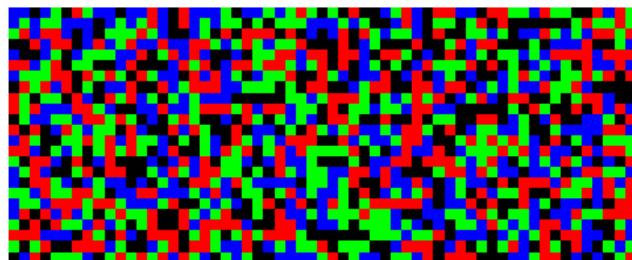
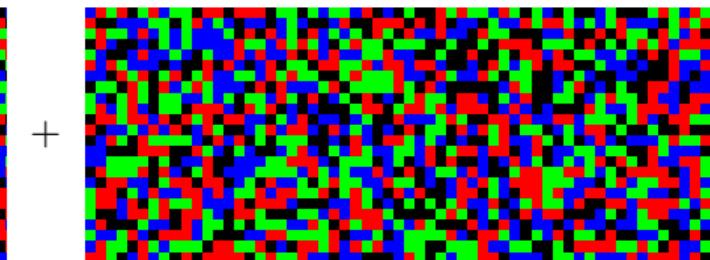
Shares have **random** contents made of R, G, B, K pixels
Details will be presented further

Random shares in color

Secret image

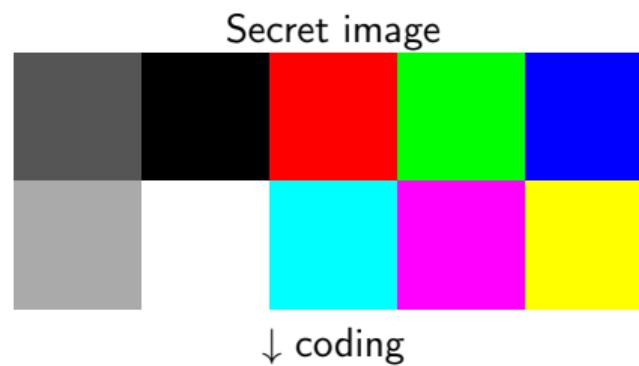
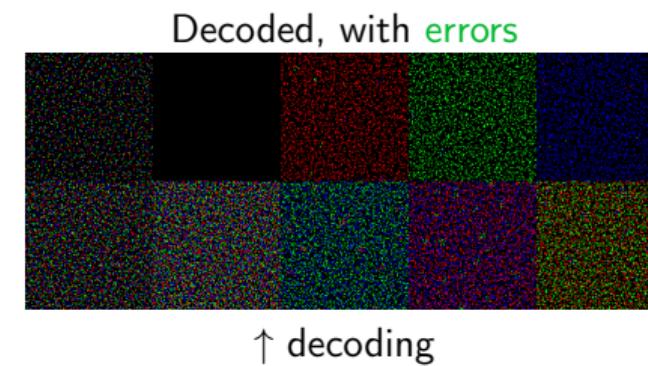
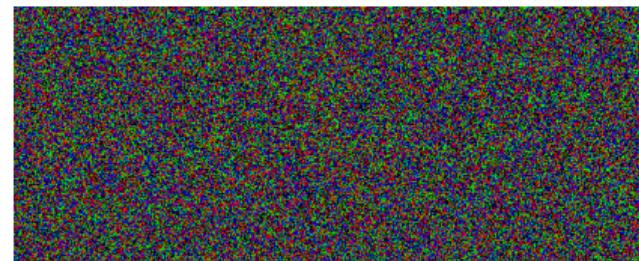


↓ coding

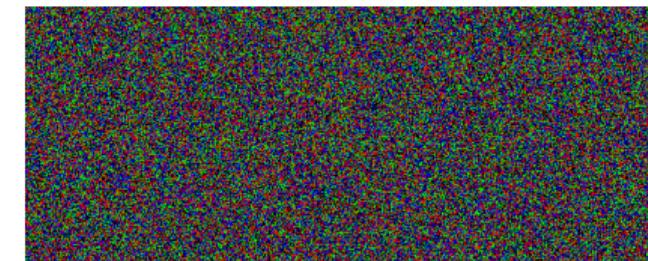


Shares have **random** contents made of R, G, B, K pixels (UL corn. $\times 10$)
Details will be presented further

Random shares in color



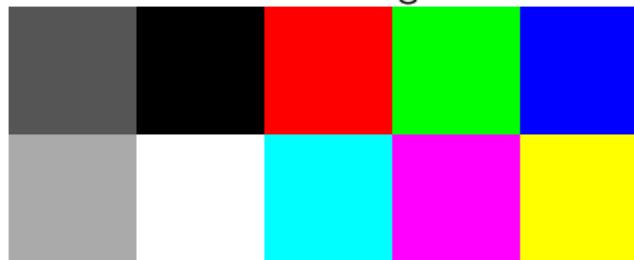
+



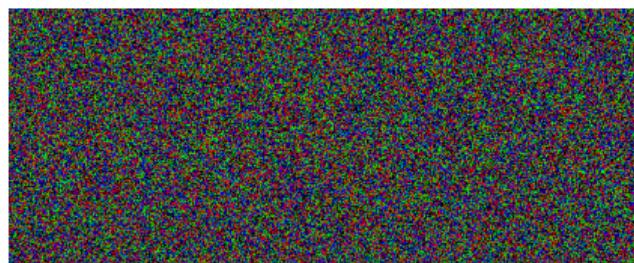
Shares have **random** contents made of R, G, B, K pixels
Details will be presented further

Random shares in color

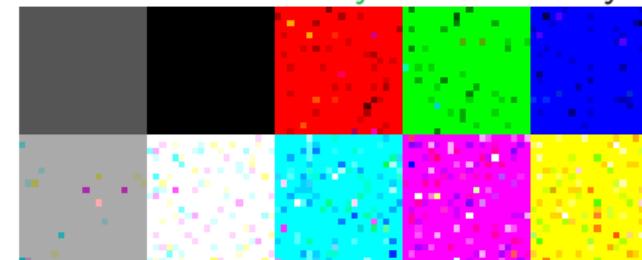
Secret image



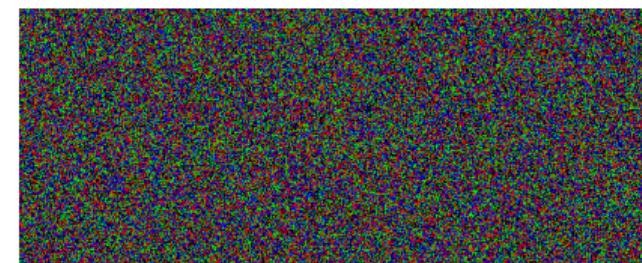
↓ coding



Can be numerically restored easily



↑ decoding



Shares have **random** contents made of R, G, B, K pixels
Details will be presented further

Main content

- Classical coding of black-and-white images
- Coding of black-and-white images **in random shares**
- Randomness at a cost of **errors**
- Going to color: Coding of color images **in random shares**
- Two methods of coding: by **hiding** and by **unhiding**
- Testing the randomness – a simulated random experiment
- Histograms of p -values – small number of failures, histogram flatness
- Results

Main content

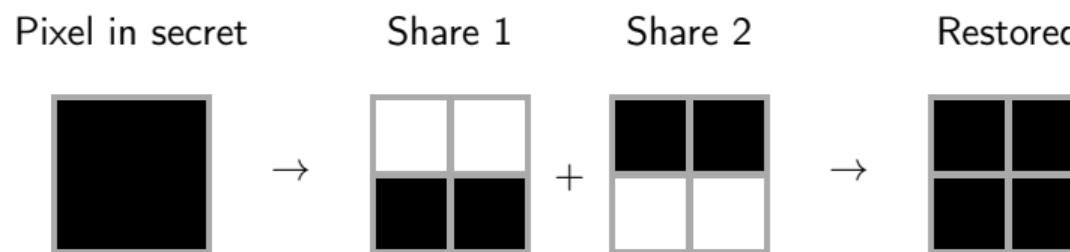
- Classical coding of black-and-white images
- Coding of black-and-white images **in random shares**
- Randomness at a cost of **errors**
- Going to color: Coding of color images **in random shares**
- Two methods of coding: by **hiding** and by **unhiding**
- Testing the randomness – a simulated random experiment
- Histograms of p -values – small number of failures, histogram flatness
- Results

Main content

- Classical coding of black-and-white images
- Coding of black-and-white images in random shares
- Randomness at a cost of errors
- Going to color: Coding of color images in random shares
- Two methods of coding: by hiding and by unhiding
- Testing the randomness – a simulated random experiment
- Histograms of p -values – small number of failures, histogram flatness
- Results

Classic black-and-white (B-W) coding

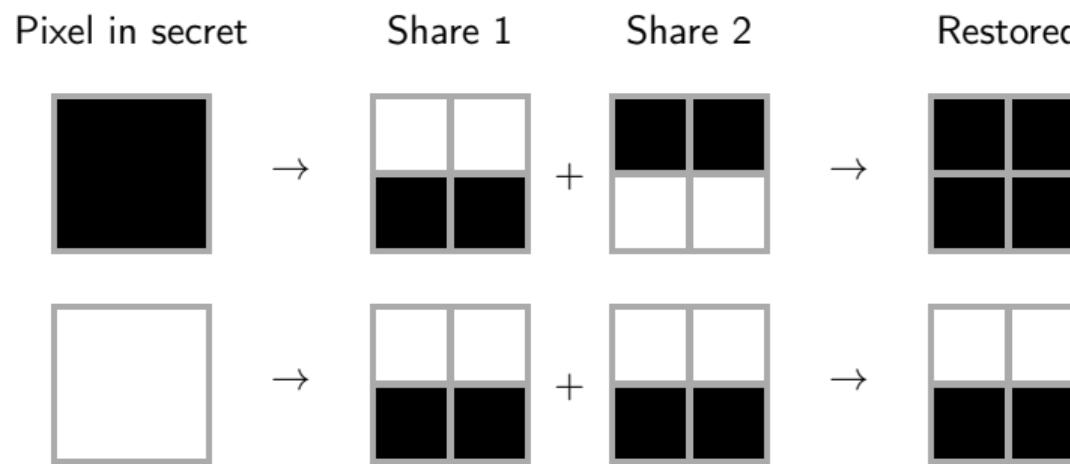
Classic visual cryptography explained



Source: (Naor and Shamir 1995; Naor and Shamir 1997)

Classic black-and-white (B-W) coding

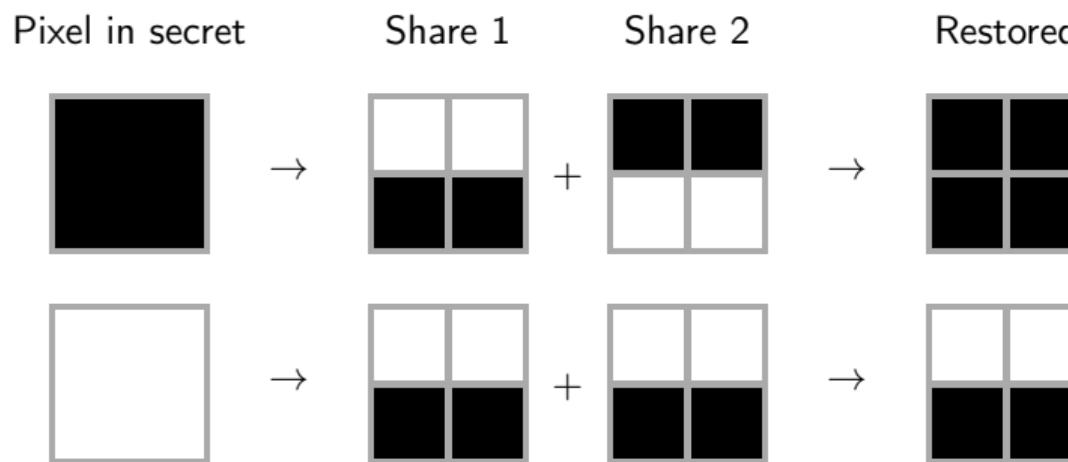
Classic visual cryptography explained



Source: (Naor and Shamir 1995; Naor and Shamir 1997)

Classic black-and-white (B-W) coding

Classic visual cryptography explained



Share 1: drawn **at random** from *tiles* below. Share 2: chosen according to share 1 and secret.

Source: (Naor and Shamir 1995; Naor and Shamir 1997)

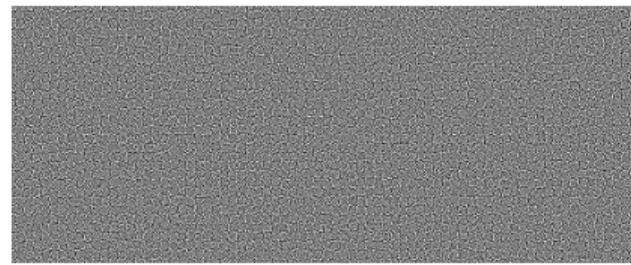
Classic visual cryptography – now we understand it

Share 1 is random within limits; share 2 is random similarly, and not correlated with secret.

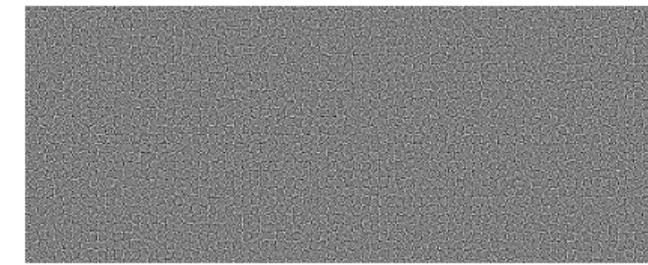
Concept: (Naor and Shamir 1995; Naor and Shamir 1997). Images: (Orłowski and Chmielewski 2019a).

Classic visual cryptography – now we understand it

↓ coding in two shares



+



Neither *share* contains information on the secret, but their structure is specific.

Share 1 is random within limits; share 2 is random similarly, and not correlated with secret.

Concept: (Naor and Shamir 1995; Naor and Shamir 1997). Images: (Orłowski and Chmielewski 2019a).

Classic black-and-white (B-W) coding

Classic visual cryptography – now we understand it

Secret image

↓ coding in two *shares*

1

Neither share contains information on the secret, but their structure is specific. (UL corn. $\times 10$)

Share 1 is random within limits; share 2 is random similarly, and not correlated with secret.

Concept: (Naor and Shamir 1995; Naor and Shamir 1997). Images: (Orłowski and Chmielewski 2019a).

Classic visual cryptography – now we understand it

Secret image

↓ coding in two *shares*

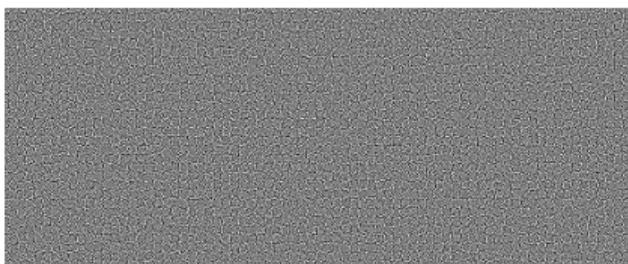
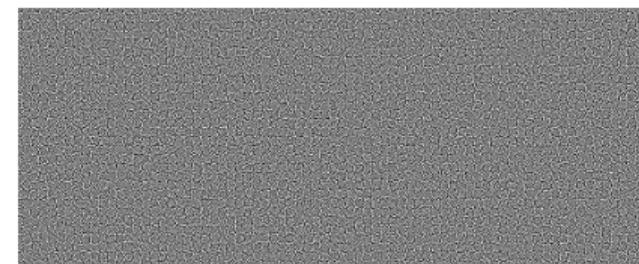


Image decoded, 2×2 larger

↑ decoding by simply overlaying



Neither share contains information on the secret, but their structure is specific.

Share 1 is random within limits; share 2 is random similarly, and not correlated with secret.

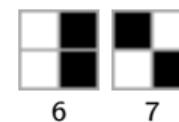
Concept: (Naor and Shamir 1995; Naor and Shamir 1997). Images: (Orłowski and Chmielewski 2019a).

Random B-W visual cryptography explained

Classic: only tiles with 2 pixels white, 2 pixels black, for accurate coding:

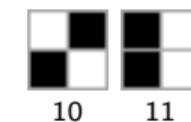
Share 1: drawn **at random** from tiles below. Share 2: chosen according to share 1 and secret.

4



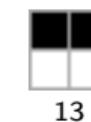
6

7



10

11

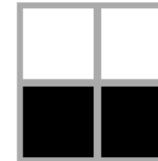


13

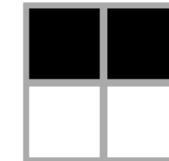
Pixel in secret



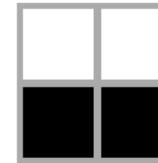
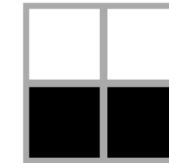
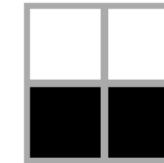
Share 1



Share 2



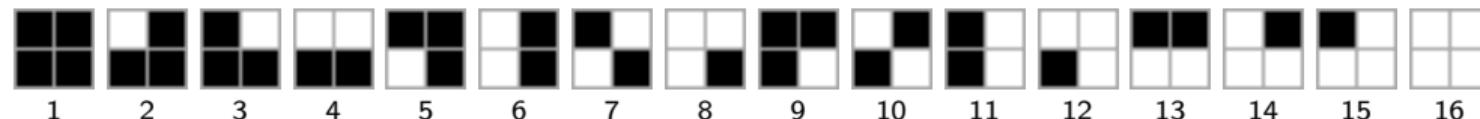
Restored



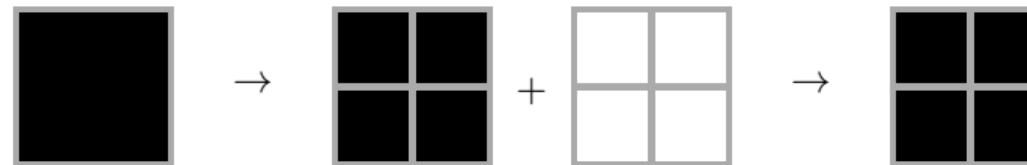
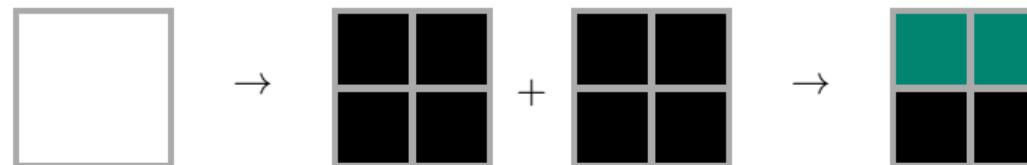
Random B-W visual cryptography explained

Random: with all possible tiles – errors possible

Share 1: drawn **at random** from tiles below. Share 2: chosen according to share 1 and secret.



Pixel in secret Share 1 Share 2 Restored



marked pixels
should be white
+2 pix error

Random B-W visual cryptography: errors

Decoded classically

Decoded randomly, with errors

Random B-W visual cryptography: errors

Decoded classically

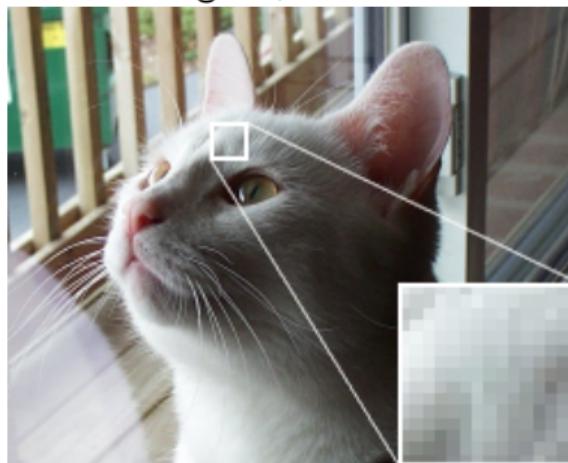
Decoded randomly, with errors

Errors: ■ +1 pix, ■ +2 pix, ■ -1 pix, ■ -2 pix

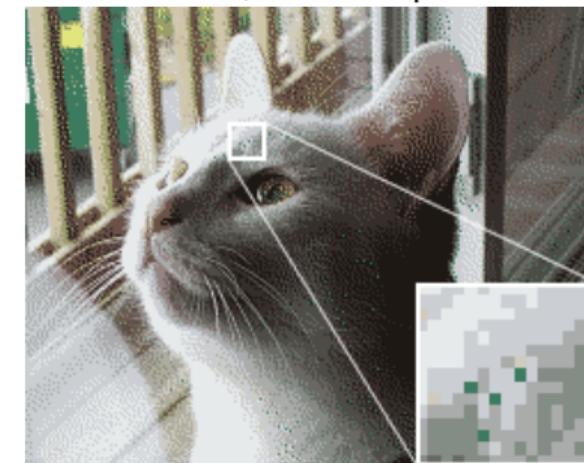
Introducing color

Dithering and color quantization

Original, full color



Dithered, 16-color palette



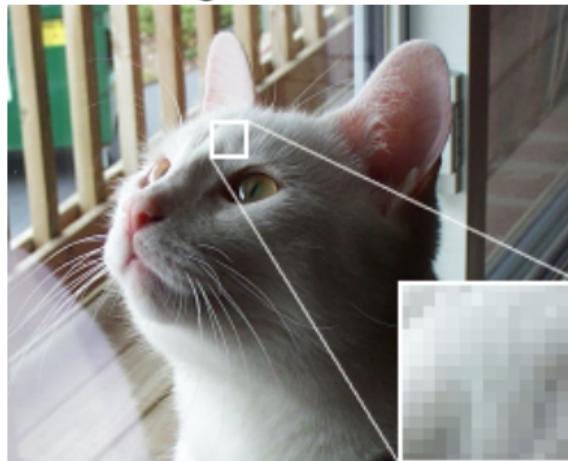
- Palettes with R, G, B and K (black) pixels only
- Transparencies treated as light emitting device, hence additive color model
- Dithering and color quantization is not in scope of this presentation

Source: (Wikipedia contributors 2021).

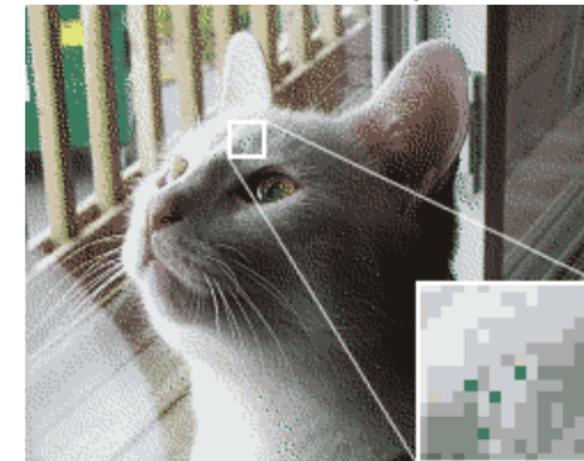
Introducing color

Dithering and color quantization

Original, full color



Dithered, 16-color palette



- Palettes with R, G, B and K (black) pixels only
- Transparencies treated as light emitting device, hence additive color model
- Dithering and color quantization is not in scope of this presentation

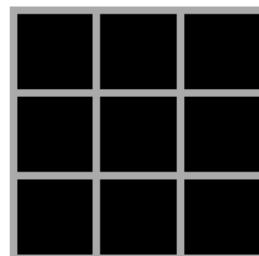
Source: (Wikipedia contributors 2021).

Introducing segments

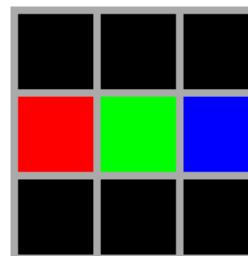
- Each pixel of the secret was represented with a *tile*, 2×2
- Now it will be represented with a *segment* consisting of *tiles*
- Segment is large enough to accommodate color: 3×3 tiles.

Introducing segments

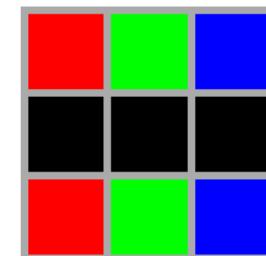
- Each pixel of the secret was represented with a *tile*, 2×2
- Now it will be represented with a *segment* consisting of *tiles*
- Segment is large enough to accommodate color: 3×3 tiles.



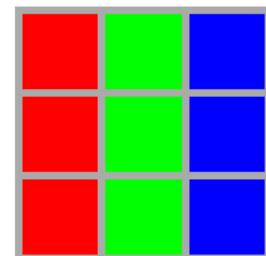
black



1/3 grey



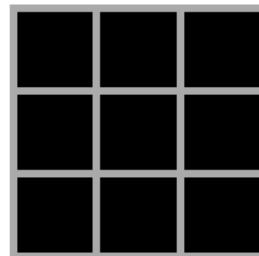
2/3 grey



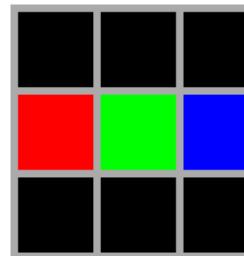
white

Introducing segments

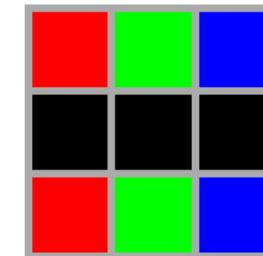
- Each pixel of the secret was represented with a *tile*, 2×2
- Now it will be represented with a *segment* consisting of *tiles*
- Segment is large enough to accommodate color: 3×3 tiles.



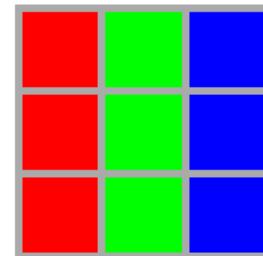
black



1/3 grey



2/3 grey

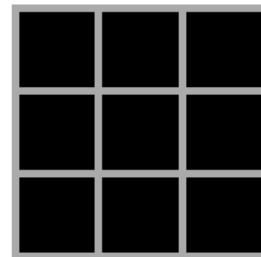


white

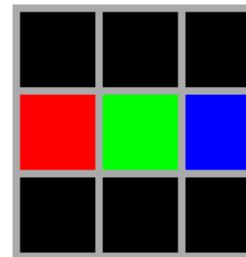
- R , G , B , $C=G+B$, $M=R+B$, $Y=R+G$ and $W=R+G+B$ at four levels can be represented

Introducing segments

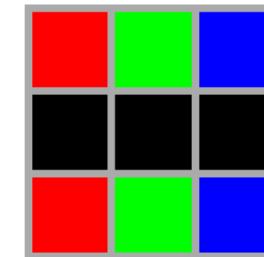
- Each pixel of the secret was represented with a *tile*, 2×2
- Now it will be represented with a *segment* consisting of *tiles*
- Segment is large enough to accommodate color: 3×3 tiles.



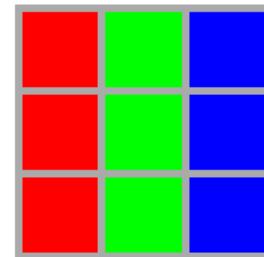
black



1/3 grey



2/3 grey



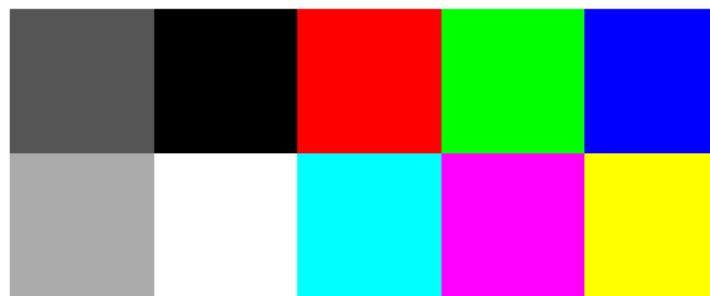
white

- R, G, B, C=G+B, M=R+B, Y=R+G and W=R+G+B at four levels can be represented
- $4^3 = 64$ color palette
- From dithering → numbers $\in \{0, 1, 2, 3\}$ of pixels necessary in R, G, B

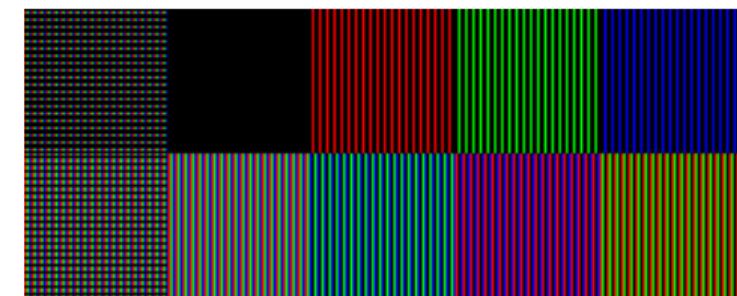
Source: (Chmielewski, Gawdzik, and Orłowski 2019).

Dithering and decomposing into color stripes

Original, full color



Dithered and decomposed



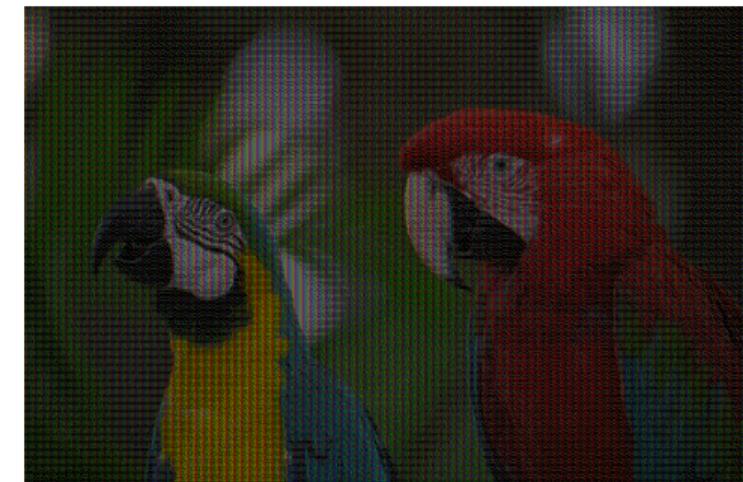
- 64-color palette is not bad, but decomposition into color stripes brings quality loss
- Decomposition is necessary – it makes it possible to represent color by R, G and B

Source: (Chmielewski, Nieniewski, and Orłowski 2021b).

Dithering and decomposing into color stripes

Original, full color

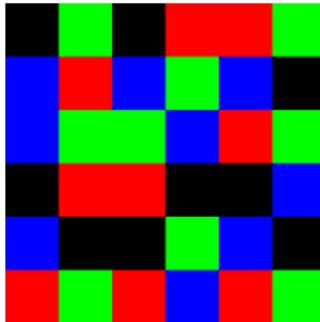
Dithered and decomposed



- 64-color palette is not bad, but decomposition into color stripes brings quality loss
- Decomposition is necessary – it makes it possible to represent color by R, G and B

Source: (Chmielewski, Nieniewski, and Orłowski 2021b).

A totally random color tile



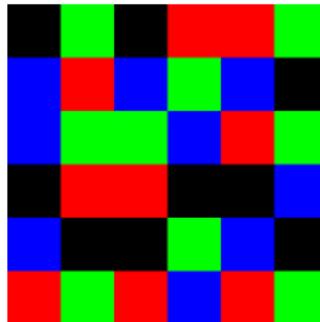
Each tile is formed of random pixels R, G, B, K.

BTW, it does not have to be 6×6 (not used here)

Source: (Chmielewski, Nieniewski, and Orłowski 2021a).

- Therefore, the first share is (pseudo)random by definition – it is formed by drawing values $\{1, 2, 3, 4\} \equiv \{R, G, B, K\}$ from a (pseudo)random number generator
- The second share is formed from the first one, but it is modified to code the secret image
- Qn: does this modification make the second share “less random”?
 - Randomness in discrete sets means *no structure can be detected*
 - Structure \rightarrow not random; otherwise \rightarrow no evidence of randomness
 - Randomness cannot be *detected*; its lack can, so as many tests as possible are needed
 - We shall return to this after considering the problem of errors

A totally random color tile



Each tile is formed of random pixels R, G, B, K.

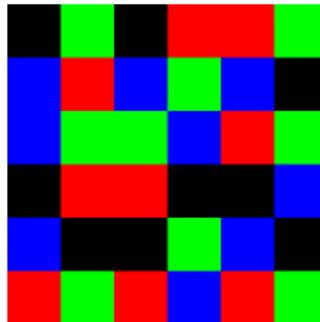
BTW, it does not have to be 6 × 6 (not used here)

Source: (Chmielewski, Nieniewski, and Orłowski 2021a).

- Therefore, the first share is (pseudo)random by definition – it is formed by drawing values $\{1, 2, 3, 4\} \equiv \{R, G, B, K\}$ from a (pseudo)random number generator
- The second share is formed from the first one, but it is modified to code the secret image
- **Qn: does this modification make the second share “less random”?**

- Randomness in discrete sets means *no structure can be detected*
- Structure → not random; otherwise → no evidence of randomness
- Randomness cannot be *detected*; its lack can, so as many tests as possible are needed
- We shall return to this after considering the problem of errors

A totally random color tile



Each tile is formed of random pixels R, G, B, K.

BTW, it does not have to be 6×6 (not used here)

Source: (Chmielewski, Nieniewski, and Orłowski 2021a).

- Therefore, the first share is (pseudo)random by definition – it is formed by drawing values $\{1, 2, 3, 4\} \equiv \{R, G, B, K\}$ from a (pseudo)random number generator
- The second share is formed from the first one, but it is modified to code the secret image
- Qn: does this modification make the second share “less random”?**
- Randomness in discrete sets means *no structure can be detected*
- Structure → not random; otherwise → no evidence of randomness
- Randomness cannot be *detected*; its lack can, so as many tests as possible are needed
- We shall return to this after considering the problem of errors

Two methods

- Now, segment 1 contains **randomly drawn R, G, B and K pixels – randomness!**
- Only operation on a segment in share 2 is **swapping** the pixels: **randomness** hopefully maintained

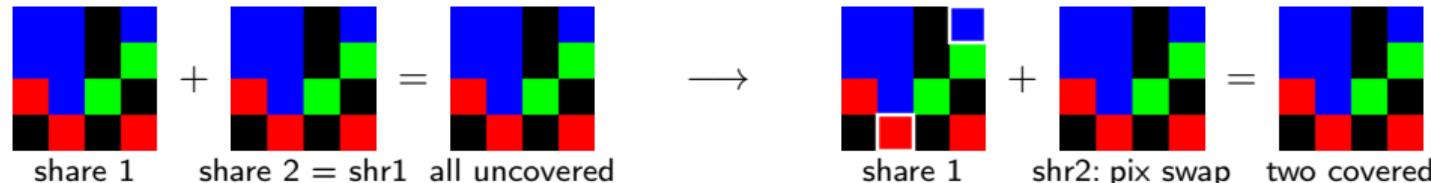
Two methods

- Now, segment 1 contains **randomly drawn** R, G, B and K pixels – **randomness!**
- Only operation on a segment in share 2 is **swapping** the pixels: **randomness** hopefully maintained

Two methods

- Now, segment 1 contains **randomly drawn R, G, B and K pixels – randomness!**
- Only operation on a segment in share 2 is **swapping** the pixels: **randomness** hopefully maintained

Hiding method: initially shares equal → **hiding by swapping**

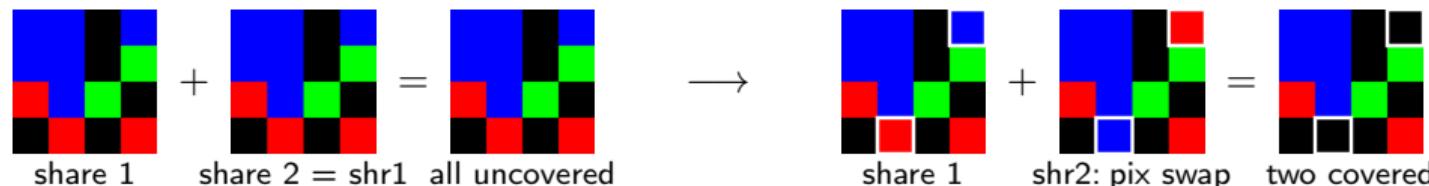


Randomness in color

Two methods

- Now, segment 1 contains **randomly drawn** R, G, B and K pixels – **randomness!**
- Only operation on a segment in share 2 is **swapping** the pixels: **randomness** hopefully maintained

Hiding method: initially shares equal → **hiding** by **swapping**

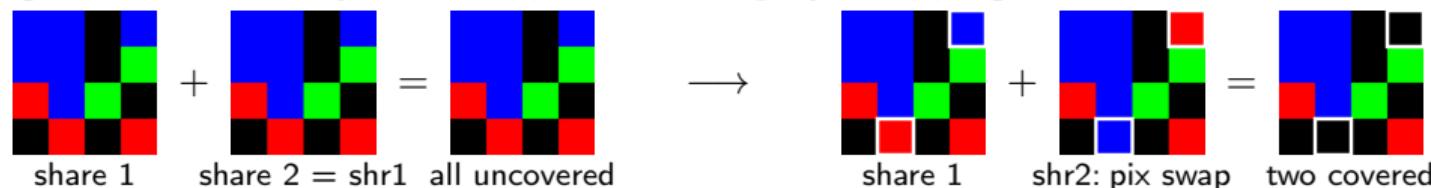


It is probable that some pixels remain unhidden

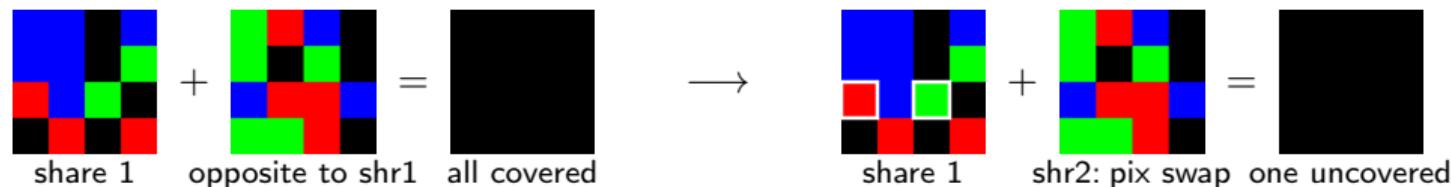
Two methods

- Now, segment 1 contains **randomly drawn R, G, B and K pixels** – **randomness!**
- Only operation on a segment in share 2 is **swapping** the pixels: **randomness** hopefully maintained

Hiding method: initially shares equal → **hiding by swapping**



Unhiding method: initially shares opposite (covering) → **unhiding by swapping**



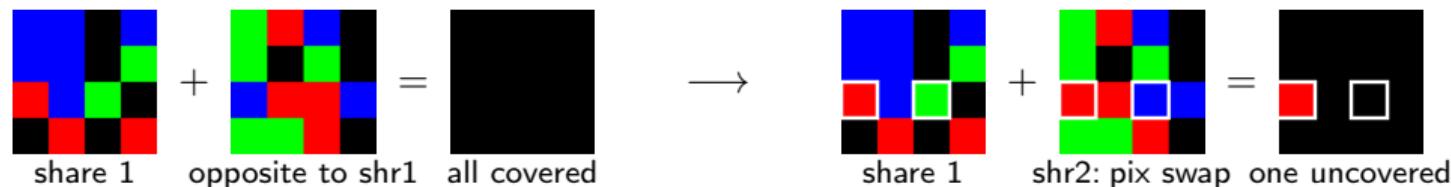
Two methods

- Now, segment 1 contains **randomly drawn R, G, B and K pixels** – **randomness!**
- Only operation on a segment in share 2 is **swapping** the pixels: **randomness** hopefully maintained

Hiding method: initially shares equal → **hiding by swapping**

It is probable that some pixels remain unhidden

Unhiding method: initially shares opposite (covering) → **unhiding by swapping**



Surely no pixels can remain unhidden

Algorithm – Truly random coding in one segment

Algorithm (simplified):

- **Input:** random `seg1 = seg2` (**hiding**) or `seg1 $\not\equiv$ seg2` (**unhiding**)
Input: numbers of R, G, B pixels **planned to be color** according to dithering
- For each segment in the image:
 - While **planned** (from dithering) number of uncovered color pixels not attained and **there are pixels** to choose from
 - 1 Choose 2 pixels `pix1` and `pix2` at random
 - 2 If `pix1` or `pix2` is **fixed** then goto 1
 - 3 If swapping `pix1` with `pix2` in `seg2` would **be profitable** then
 - // condition **be profitable** means:
 - // **hiding**: 1 or 2 pixels **covered**, none uncovered
 - // **unhiding**: 1 or 2 pixels **uncovered**, within **planned** numbersSwap `pix1` with `pix2` in `seg2`
- **Output:** `seg2` with only **planned** pixels uncovered, if possible

Comments:

- Randomness is the goal, not efficiency, hence minimum protection against repetitions
- Segments are processed independently, so parallelization would be natural

Algorithm – Truly random coding in one segment

Algorithm (simplified):

- **Input:** random `seg1 = seg2` (**hiding**) or `seg1 $\not\equiv$ seg2` (**unhiding**)
Input: numbers of R, G, B pixels **planned to be color** according to dithering
- For each segment in the image:
 - While **planned** (from dithering) number of uncovered color pixels not attained and **there are pixels** to choose from
 - 1 Choose 2 pixels `pix1` and `pix2` at random
 - 2 If `pix1` or `pix2` is **fixed** then goto 1
 - 3 If swapping `pix1` with `pix2` in `seg2` would **be profitable** then
 - // condition **be profitable** means:
 - // **hiding**: 1 or 2 pixels **covered**, none uncovered
 - // **unhiding**: 1 or 2 pixels **uncovered**, within **planned** numbers
 - Swap `pix1` with `pix2` in `seg2`
- **Output:** `seg2` with only **planned** pixels uncovered, if possible

Comments:

- Randomness is the goal, not efficiency, hence minimum protection against repetitions
- Segments are processed independently, so parallelization would be natural

Two types of errors

Assume the ***hiding*** method, initially equal shares, all pixels unhidden.

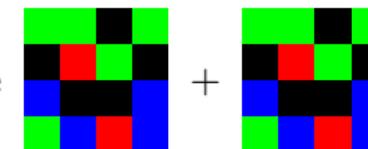
- Pixels in a segment are **random**: not always there are enough pixels in any color
~~ **missing color** error

Two types of errors

Assume the **hiding** method, initially equal shares, all pixels unhidden.

- Pixels in a segment are **random**: not always there are enough pixels in any color
~~ **missing color** error

We need **4 R** pixels, but **random** shares are



+

⇒ No way, **missing color**

Two types of errors

Assume the ***hiding*** method, initially equal shares, all pixels unhidden.

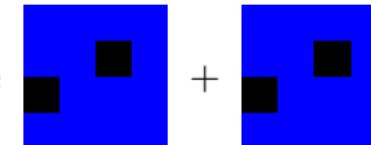
- Pixels in a segment are **random**: not always there are enough pixels in any color
~~ **missing color** error
- Not always any number of pixels can be covered
~~ **hiding failure** error

Two types of errors

Assume the **hiding** method, initially equal shares, all pixels unhidden.

- Pixels in a segment are **random**: not always there are enough pixels in any color
~~ **missing color** error
- Not always any number of pixels can be covered
~~ **hiding failure** error

We need **3 B** pixels, but **random** shares are

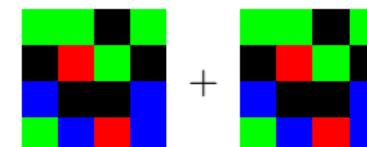


Two types of errors

Assume the **hiding** method, initially equal shares, all pixels unhidden.

- Pixels in a segment are **random**: not always there are enough pixels in any color
~~ **missing color** error

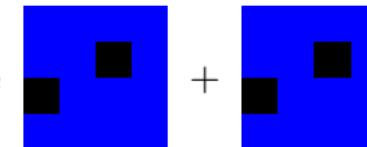
We need **4 R** pixels, but **random** shares are



⇒ No way, **missing color**

- Not always any number of pixels can be covered
~~ **hiding failure** error

We need **3 B** pixels, but **random** shares are



⇒ No way, **hiding failure**

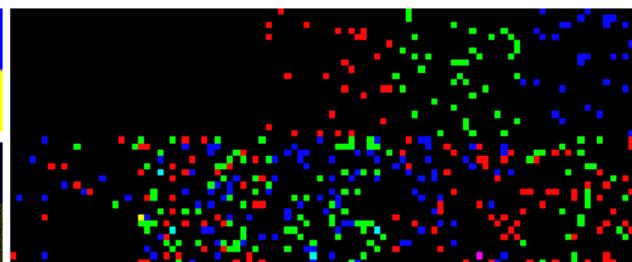
In the **unhiding** method, where all pixels are **initially hidden**, and while swapping the unhiding of unwanted color is not allowed, the **hiding failure** error cannot appear

Examples: test100 and parrots

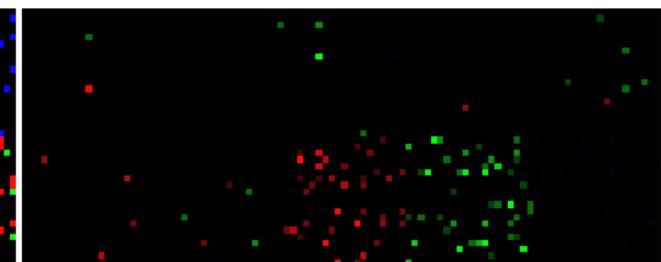
Hiding method: Two types of errors

1/2: test100

decoded



missing color errors



hiding failure errors

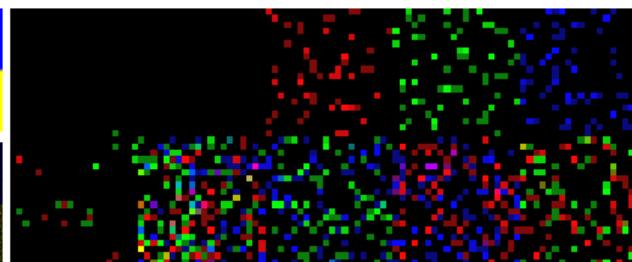
- Note the relation of error density to color: **more white** more errors
- Number of *hiding failures* is generally smaller than that of *missing colors*

Examples: test100 **and** parrots

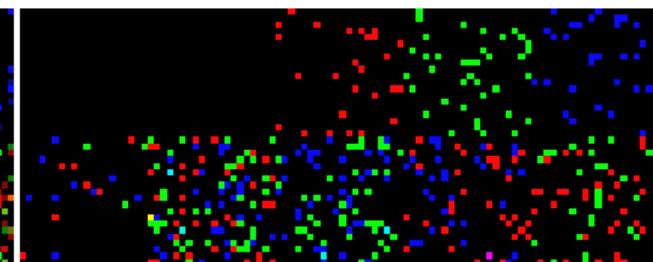
Unhiding method: One type of errors

1/2: test100

decoded



missing color errors



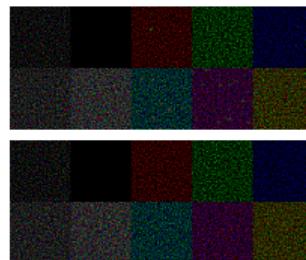
For comparison: *missing color from hiding*

- Note the relation of error density to color: **more white** more errors
- Number of *hiding failures* is generally larger than that in the *hiding* method

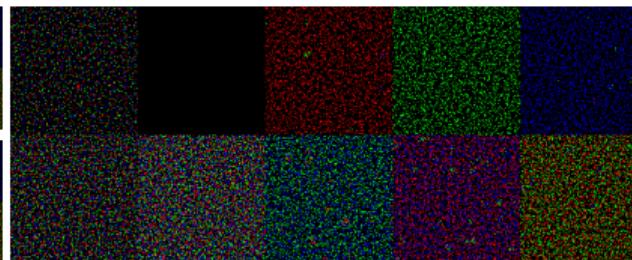
Examples: test100 and parrots

Two methods: restored images

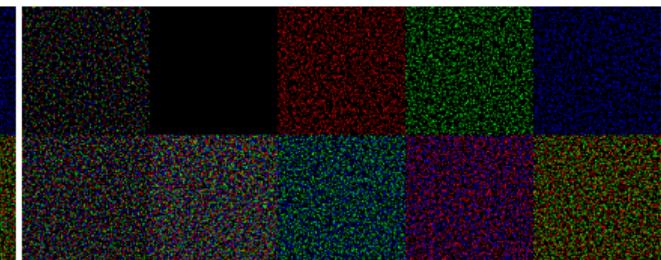
1/2: test100



decoded: $\uparrow bas \downarrow no hid$



decoded from *hiding*



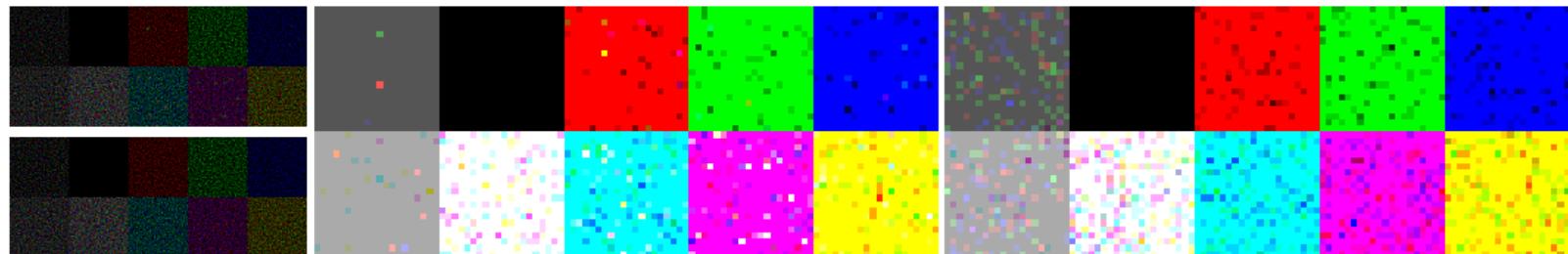
decoded from *unhiding*

- In the *hiding* method pixels can be too bright, there are **spikes**
- In the *unhiding* method pixels can be too dark, there is **granularity**

Examples: test100 **and** parrots

Two methods: restored images

1/2: test100



decoded: $\uparrow bas \downarrow no hid$

restored from *hiding*

restored from *unhiding*

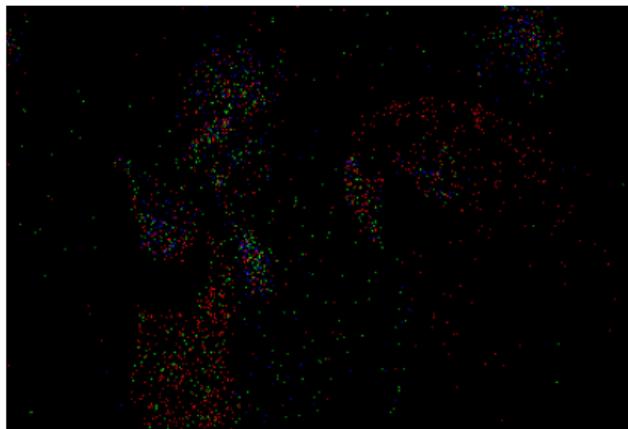
- In the *hiding* method pixels can be too bright, there are **spikes**
- In the *unhiding* method pixels can be too dark, there is **granularity**

Examples: test100 and parrots

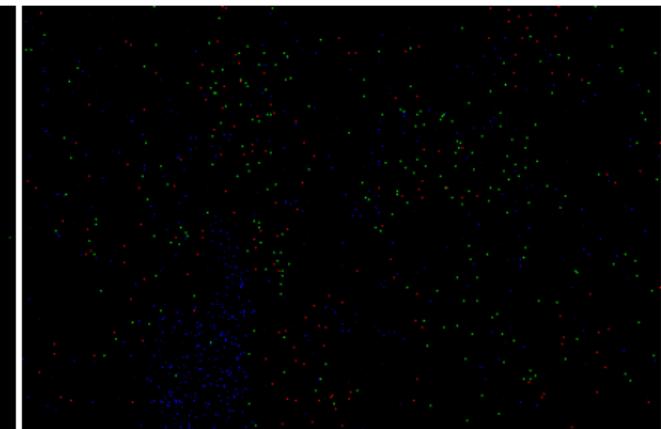
Hidig method: Two types of errors

2/2: parrots

decoded



missing color errors



hiding failure errors

- Note the relation of error density to color: **more white** more errors
- Number of *hiding failures* is generally smaller than that of *missing colors*

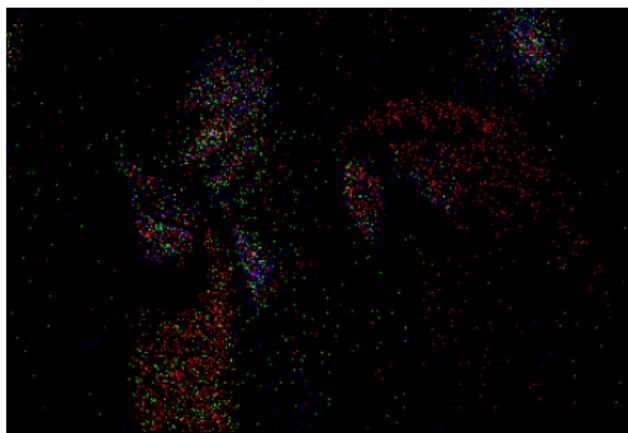
Examples: test100 **and** parrots

Unhiding method: One type of errors

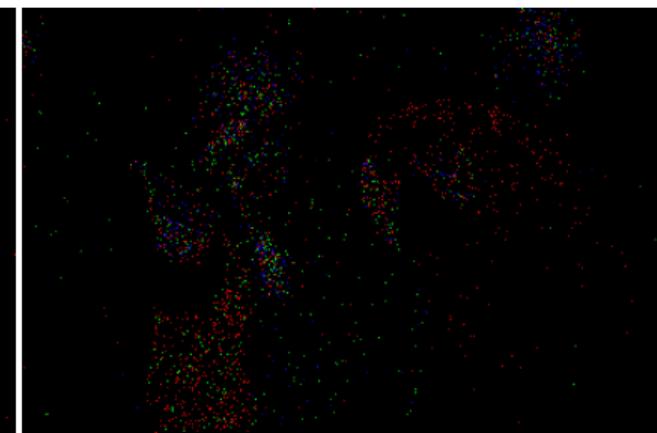
2/2: parrots

decoded

missing color errors



For comparison: *missing color from hiding*

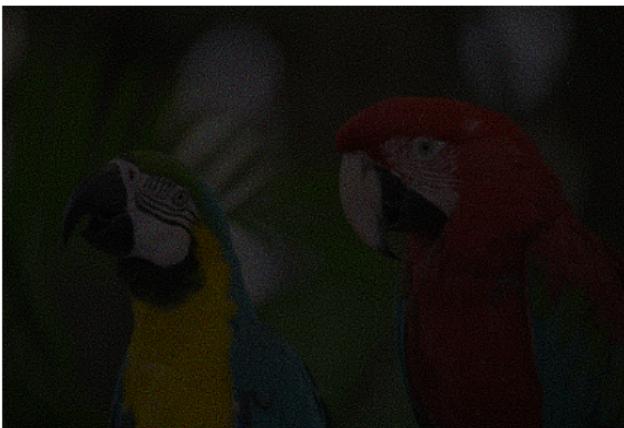
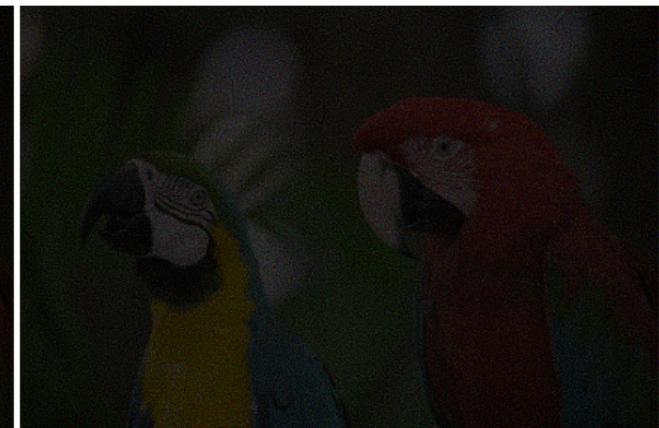


- Note the relation of error density to color: **more white** more errors
- Number of *hiding failures* is generally larger than that in the *hiding* method

Examples: test100 **and** parrots

Two methods: restored images

2/2: parrots



decoded: $\uparrow bas \downarrow no hid$

decoded from *hiding*

decoded from *unhiding*

- In *hiding* method there are **spikes**
- In *unhiding* there is **granularity**

Examples: test100 **and** parrots

Two methods: restored images

2/2: parrots

decoded: $\uparrow bas \downarrow no hid$

restored from *hiding*

restored from *unhiding*

- In *hiding* method there are **spikes**
- In *unhiding* there is **granularity**

Testing the randomness

Simulation of a series of experiments

- We used the NIST randomness tests (Bassham, Rukhin, Soto, Nechvatal, Smid, Leigh, Levenson, Vangel, Heckert, and Banks 2010): a battery of 15 advanced tests, some with many subtests (188 tests together).
- Tests were performed for six known test images (parrots, peppers, Lena, ...). For each, 100 realizations of coding were simulated.
 - both shares were analyzed → 2 cases,
 - pixels were read by rows and by columns → $\times 2$ cases = 4 cases per image,
 - pixels in R, G, B, K were represented by 00, 01, 10, 11 (arbitrary choice).
- p -values for each of 4×100 realizations $\times 188$ tests, for benchmark images, were recorded
- These 75 200 data per image were presented in a compact form, in one page of graphs (Chmielewski, Nieniewski, and Orłowski 2022a)
- The $6 \times 188 \times 4 = 4512$ histograms (6 images, 188 tests, 2 shares, 2 directions) were tested for representing a random process
- **Qn: Did the modification of share 2 introduced loss of randomness?**

Source: (Chmielewski, Nieniewski, and Orłowski 2021b), probably the first extensive randomness tests.

Statistical evidence for randomness

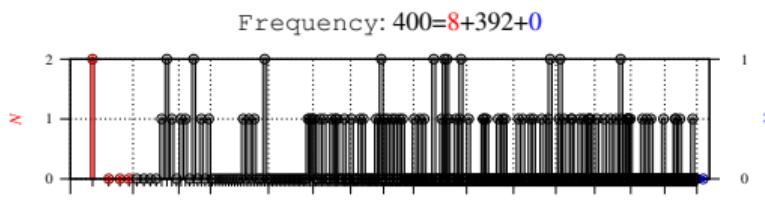
- In any test, the hypothesis of randomness **can be rejected**.
But randomness **cannot be proven**.
Hence, the more tests the better, but never too many.
- We have already used the results of NIST randomness tests to analyze p -values and to show graphical evidence of randomness (Chmielewski, Nieniewski, and Orłowski 2022a).
Now we shall test it statistically.
- We analyze these 4512 sets of p -value vectors, 100 elements each, in two ways:
 - by counting how many fall below a fixed rejection threshold ($\alpha = 0.01$),
 - by testing their histogram for deviations from uniformity using the Kolmogorov–Smirnov and chi-squared tests. This second-order statistical analysis enables a more rigorous evaluation of the method's ability to preserve randomness.
- **Shortly: a sequence of bits is random, if the histogram of p -values in a test is flat.**
We shall spare you the trouble of looking at all the histograms.

Statistical evidence for randomness

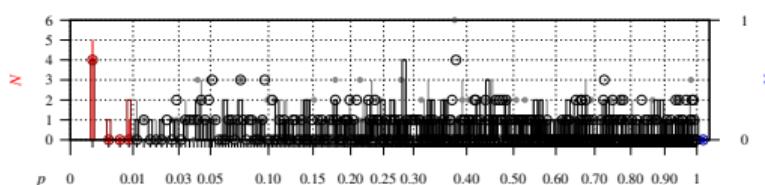
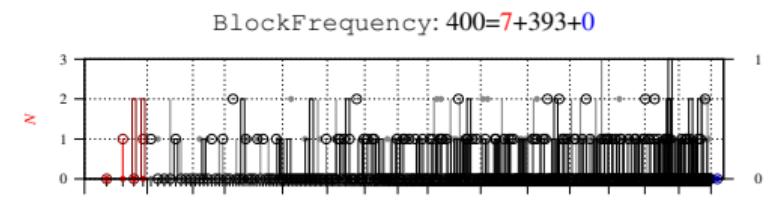
- In any test, the hypothesis of randomness **can be rejected**.
But randomness **cannot be proven**.
Hence, the more tests the better, but never too many.
- We have already used the results of NIST randomness tests to analyze p -values and to show graphical evidence of randomness (Chmielewski, Nieniewski, and Orłowski 2022a).
Now we shall test it statistically.
- We analyze these 4512 sets of p -value vectors, 100 elements each, in two ways:
 - by counting how many fall below a fixed rejection threshold ($\alpha = 0.01$),
 - by testing their histogram for deviations from uniformity using the Kolmogorov–Smirnov and chi-squared tests. This second-order statistical analysis enables a more rigorous evaluation of the method's ability to preserve randomness.
- **Shortly: a sequence of bits is random, if the histogram of p -values in a test is flat.**
We shall spare you the trouble of looking at all the histograms.

True randomness attained – some visual evidence

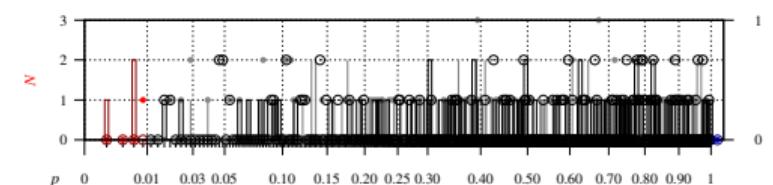
Histograms of p -values for parrots



Cumulative Sums 2 subtests: $800 = 21 + 779 + 0$



$$\text{B11n.s. } 400 = 4 + 396 + 0$$



1/4

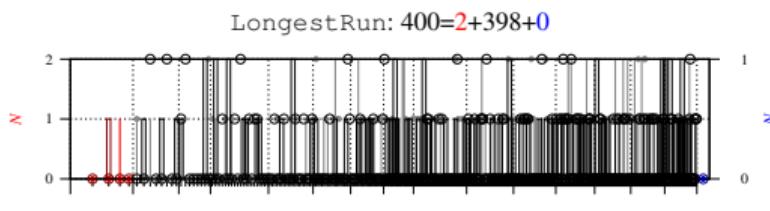
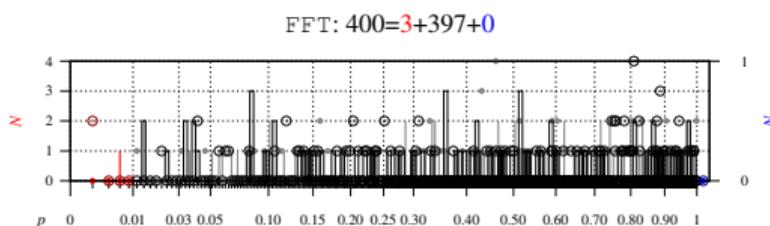
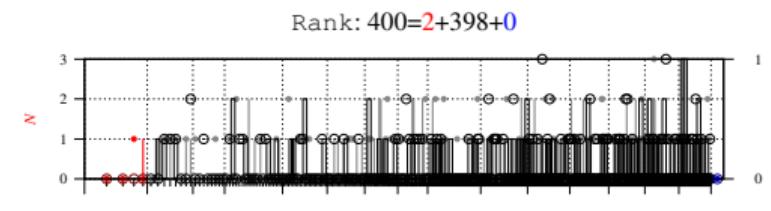
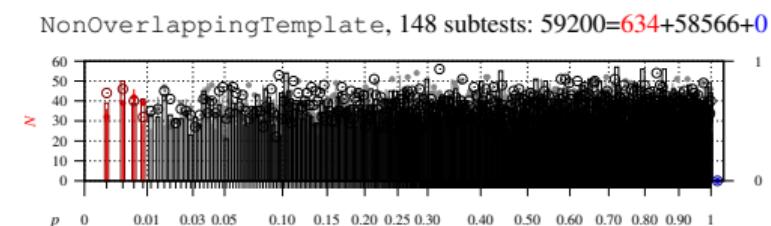
- Histograms are flat and exhibit expected numbers of failures ($p \leq \alpha, \alpha = 0.01$)
- No reason to reject the hypothesis of randomness, so **success**

Source: (Chmielewski, Nieniewski, and Orłowski 2021a).

► key for graphs

True randomness attained – some visual evidence

Histograms of p -values for parrots



2/4

- Histograms are flat and exhibit expected numbers of failures ($p \leq \alpha, \alpha = 0.01$)
- No reason to reject the hypothesis of randomness, so **success**

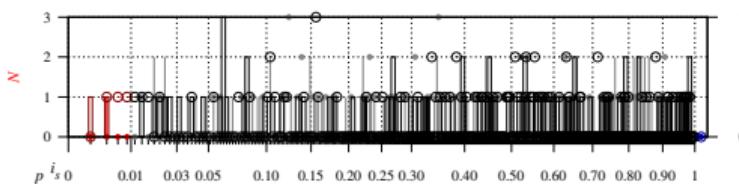
Source: (Chmielewski, Nieniewski, and Orłowski 2021a).

► key for graphs

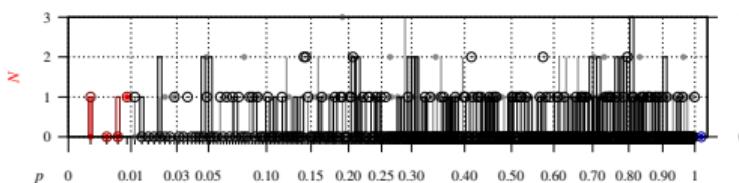
True randomness attained – some visual evidence

Histograms of p -values for parrots

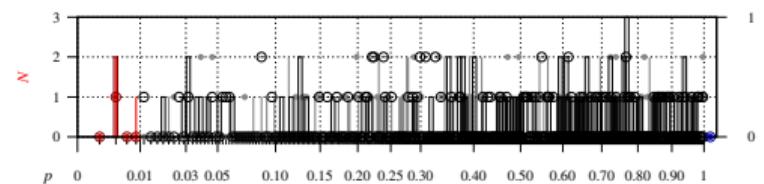
OverlappingTemplate: 400=6+394+0



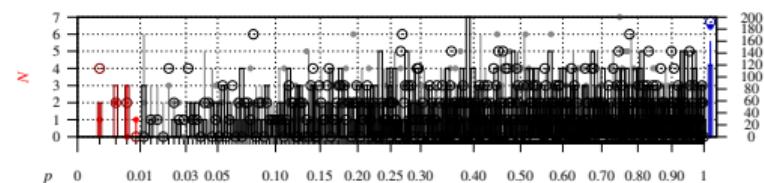
ApproximateEntropy: 400=6+394+0



Universal: $400 = 7 + 393 + 0$



RandomExcursions, 8 subtests: 3200=26+2518+656



3/4

- Histograms are flat and exhibit expected numbers of failures ($p \leq \alpha, \alpha = 0.01$)
- No reason to reject the hypothesis of randomness, so **success**

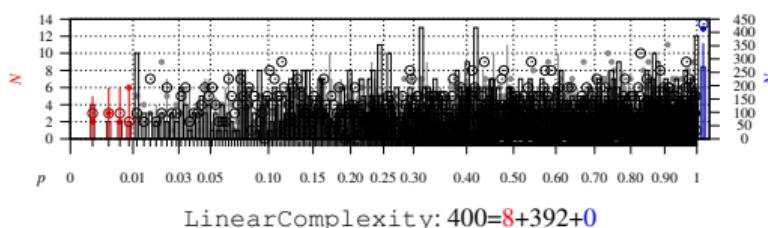
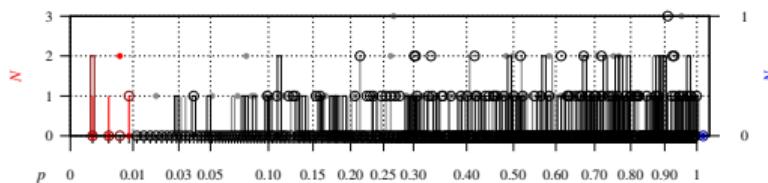
Source: (Chmielewski, Nieniewski, and Orłowski 2021a).

► key for graphs

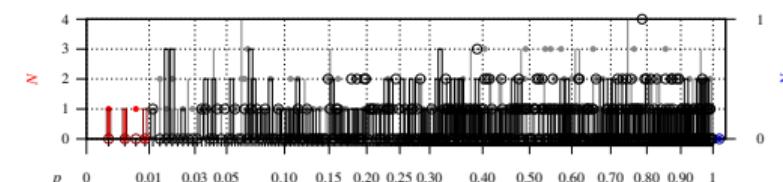
True randomness attained – some visual evidence

Histograms of p -values for parrots

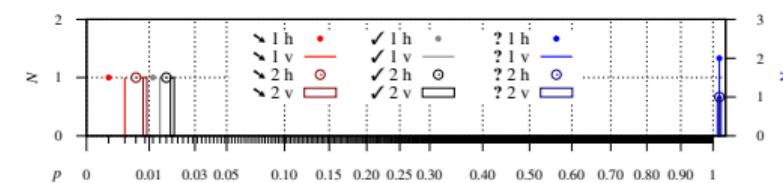
RandomExcursionsVariant, 18 subtests: 7200=57+5667+1476



Serial, 2 subtests: 800=7+793+0



Key for graphs. Sample data: 14=4+4+6: (✗ low) + (✓ good) + (? n/a)



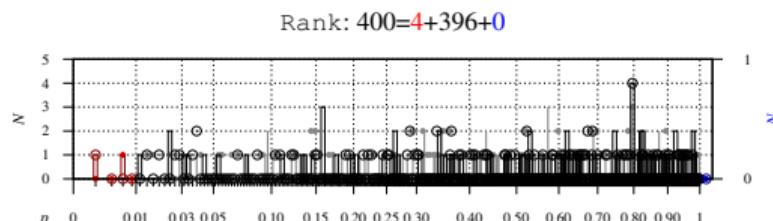
4/4

- Histograms are flat and exhibit expected numbers of failures ($p \leq \alpha, \alpha = 0.01$)
- No reason to reject the hypothesis of randomness, so **success**

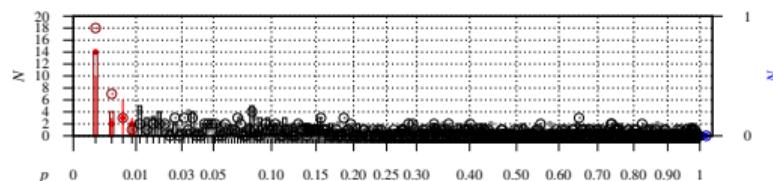
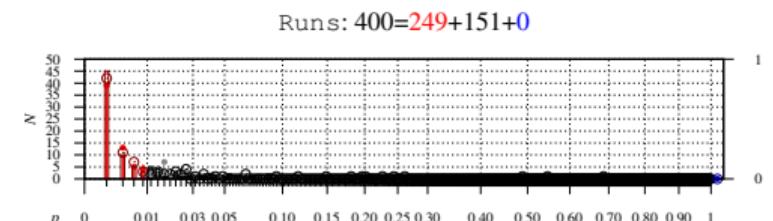
Source: (Chmielewski, Nieniewski, and Orłowski 2021a).

True randomness attained – some visual evidence

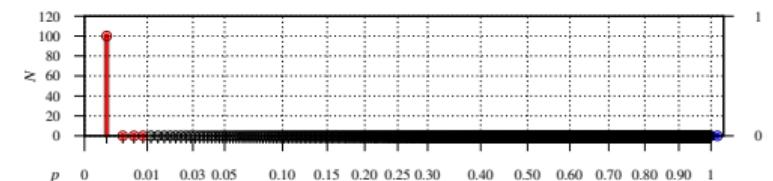
Negative examples for one of previous methods, for parrots



Serial, 2 subtests: 800=92+708+0



ApproximateEntropy: 400=400+0+0



To see ↑ how the negative evidence looks like

- Some histograms are flat, but some are clearly **not**; too many failures (**red**)
- There are reasons to reject the hypothesis of randomness, so **failure**

Source: (Chmielewski, Nieniewski, and Orłowski 2021c).

By test

Table: Rejections by Test

Test	Share 1	Share 2	Rows	Cols	Fails/Samps
<i>Hiding</i> method					
p-v	43	36	45	34	79/4512
K-S	16	29	16	29	46/4512
χ^2	19	27	23	23	46/4512
<i>Unhiding</i> method					
p-v	49	51	49	51	100/4512
K-S	16	20	21	15	36/4512
χ^2	24	25	28	21	49/4512

p-v – counting small p -values; K-S – Kolmogorov–Smirnov test; χ^2 – chi-squared test

By share/direction

Table: Rejections by Shares/Directions

Case	Counts/4512 Samples		
<i>Hiding</i> method			
By shares	Share 1: 69	Share 2: 73	Both: 8
By directions	Rows: 74	Columns: 68	Both: 6
<i>Unhiding</i> method			
By shares	Share 1: 77	Share 2: 84	Both: 7
By directions	Rows: 83	Columns: 78	Both: 9

See the paper for more comparisons.

Discussion

- Numbers of rejections were small with respect to the number of samples – close to 1%.
- Rejections in the modified share 2 were not evidently larger, and in some cases smaller than those in the readily generated share 1.
- The cases of rejecting the randomness by all three test or pairs of tests were not a rule.
- Evidence for non-randomness of color distributions in both shares is similarly small.
- NIST tests detected rejections of randomness with very different frequency.
 - OverlappingTemplate detected over ten rejections in both methods – *hiding* and *unhiding*.
 - A number of tests detected from 1 to 3 rejections.
 - A number of tests appeared not to detect any lack of randomness in any sample, in at least one method: ApproximateEntropy, CumulativeSums 2, LinearComplexity, Rank, Runs, Universal, and some subtests of NonOverlappingTemplate, RandomExcursions and RandomExcursionsVariant.

Discussion

- Numbers of rejections were small with respect to the number of samples – close to 1%.
- Rejections in the modified share 2 were not evidently larger, and in some cases smaller than those in the readily generated share 1.
- The cases of rejecting the randomness by all three test or pairs of tests were not a rule.
- Evidence for non-randomness of color distributions in both shares is similarly small.
- NIST tests detected rejections of randomness with very different frequency.
 - OverlappingTemplate detected over ten rejections in both methods – *hiding* and *unhiding*.
 - A number of tests detected from 1 to 3 rejections.
 - A number of tests appeared not to detect any lack of randomness in any sample, in at least one method: ApproximateEntropy, CumulativeSums 2, LinearComplexity, Rank, Runs, Universal, and some subtests of NonOverlappingTemplate, RandomExcursions and RandomExcursionsVariant.

Discussion

- Numbers of rejections were small with respect to the number of samples – close to 1%.
- Rejections in the modified share 2 were not evidently larger, and in some cases smaller than those in the readily generated share 1.
- The cases of rejecting the randomness by all three test or pairs of tests were not a rule.
- Evidence for non-randomness of color distributions in both shares is similarly small.
- NIST tests detected rejections of randomness with very different frequency.
 - OverlappingTemplate detected over ten rejections in both methods – *hiding* and *unhiding*.
 - A number of tests detected from 1 to 3 rejections.
 - A number of tests appeared not to detect any lack of randomness in any sample, in at least one method: ApproximateEntropy, CumulativeSums 2, LinearComplexity, Rank, Runs, Universal, and some subtests of NonOverlappingTemplate, RandomExcursions and RandomExcursionsVariant.

Conclusion

- We analyzed whether the generation of the second share in visual cryptography compromises its statistical randomness.
- We found no evidence of such degradation.
- Standard randomness tests and second-order evaluations of p -value distributions were used.
- Our method for constructing the second share produces outputs that remain statistically indistinguishable from noise.
- This confirms its suitability for secure visual encryption.
- This also demonstrates that controlled determinism can coexist with apparent randomness.
- More broadly, this shows that meta-analysis of test outputs provides a powerful tool for validating the integrity of cryptographic structures under transformation.

Thank you

▶ fav. sl.

Conclusion

- We analyzed whether the generation of the second share in visual cryptography compromises its statistical randomness.
- We found no evidence of such degradation.
- Standard randomness tests and second-order evaluations of p -value distributions were used.
- Our method for constructing the second share produces outputs that remain statistically indistinguishable from noise.
- This confirms its suitability for secure visual encryption.
- This also demonstrates that controlled determinism can coexist with apparent randomness.
- More broadly, this shows that meta-analysis of test outputs provides a powerful tool for validating the integrity of cryptographic structures under transformation.

Thank you

▶ fav. sl.

Conclusion

- We analyzed whether the generation of the second share in visual cryptography compromises its statistical randomness.
- We found no evidence of such degradation.
- Standard randomness tests and second-order evaluations of p -value distributions were used.
- Our method for constructing the second share produces outputs that remain statistically indistinguishable from noise.
- This confirms its suitability for secure visual encryption.
- This also demonstrates that controlled determinism can coexist with apparent randomness.
- More broadly, this shows that meta-analysis of test outputs provides a powerful tool for validating the integrity of cryptographic structures under transformation.

Thank you

▶ fav. sl.

References I

Ateniese, G., C. Blundo, A. D. Santis, and D. R. Stinson (2001).
Extended capabilities for visual cryptography.
Theoretical Computer Science 250(1), 143–161.

Bassham, L. E., A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid, S. D. Leigh, M. Levenson, M. Vangel, N. A. Heckert, and D. L. Banks (2010, 16 Sep).
A statistical test suite for random and pseudorandom number generators for cryptographic applications.

Technical report, National Institute of Standards and Technology, Gaithersburg, MD, USA.
Series: Special Publication (NIST SP), Rep. No. 800-22 Rev 1a.

Chmielewski, L. J., G. Gawdzik, and A. Orłowski (2019, 16-18 Oct).
Towards color visual cryptography with completely random shares.
In *Proc. Conf. PP-RAI 2019 – Konf. Polskiego Porozumienia na rzecz Rozwoju Sztucznej Inteligencji*, Wrocław, Poland,
pp. 150–155. Wrocław University of Science and Technology.

Chmielewski, L. J., M. Nieniewski, and A. Orłowski (2021a, 28-30 Jun).
Can color visual cryptography be truly random?
In M. Choraś, R. S. Choraś, M. Kurzyński, et al. (Eds.), *Progress in Image Processing, Pattern Recognition and Communication Systems – Proc. Int. Conf. CORES, IP&C, ACS 2021*, Volume 255 of *LNNS*, Bydgoszcz, Poland,
pp. 72–86. Springer, 2022.

References II

Chmielewski, L. J., M. Nieniewski, and A. Orłowski (2021b).
Testing the randomness of shares in color visual cryptography.
Pattern Analysis & Applications 24(4), 1475–1487.
doi:10.1007/s10044-021-00999-5.

Chmielewski, L. J., M. Nieniewski, and A. Orłowski (2021c).
Testing the randomness of shares in color visual cryptography.
Pattern Analysis & Applications 24(4), 1475–1487.

Chmielewski, L. J., M. Nieniewski, and A. Orłowski (2022a, 19-21 Sep).
Error analysis and graphical evidence of randomness in two methods of color visual cryptography.
In L. J. Chmielewski and A. Orłowski (Eds.), *Computer Vision and Graphics: Proc. ICCVG 2022*, Volume 598 of *LNNS*, Warsaw, Poland, pp. 237–267. Springer, Cham, 2023.

Chmielewski, L. J., M. Nieniewski, and A. Orłowski (2022b, 25-27 Apr).
Truly random color visual cryptography without surplus color spikes.
In P. Jędrzejowicz and I. Czarnowski (Eds.), *Proc. 3rd Polish Conference on Artificial Intelligence PP-RAI'2022*, Gdynia, Poland, pp. 53–56. Publishing House of Gdynia Maritime University.

Dhiman, K. and S. S. Kasana (2018).
Extended visual cryptography techniques for true color images.
Computers & Electrical Engineering 70, 647–658.

References III

Naor, M. and A. Shamir (1995, 9-12 May).

Visual cryptography.

In A. De Santis (Ed.), *Advances in Cryptology — EUROCRYPT'94. Proc. Workshop on the Theory and Application of Cryptographic Techniques*, Volume 950 of *LNCS*, Perugia, Italy, pp. 1–12. Springer.

Naor, M. and A. Shamir (1997, 10-12 Apr).

Visual cryptography II: Improving the contrast via the cover base.

In M. Lomas (Ed.), *Security Protocols. Proc. Int. Workshop on Security Protocols*, Volume 1189 of *LNCS*, Cambridge, United Kingdom, pp. 197–202. Springer.

Orłowski, A. and L. J. Chmielewski (2019a, 7-9 Jan).

Generalized visual cryptography scheme with completely random shares.

In N. Petkov, N. Strisciuglio, and C. M. Travieso (Eds.), *Proc. 2nd Int. Conf. Applications of Intelligent Systems APPIS 2019*, Las Palmas de Gran Canaria, Spain, pp. 33:1–33:6. Association for Computing Machinery.

Orłowski, A. and L. J. Chmielewski (2019b, 7-9 Jan).

Generalized visual cryptography scheme with completely random shares.

In N. Petkov, N. Strisciuglio, and C. M. Travieso (Eds.), *Proc. 2nd Int. Conf. Applications of Intelligent Systems APPIS 2019*, Las Palmas de Gran Canaria, Spain, pp. 33:1–33:6. Association for Computing Machinery.

References IV

Orłowski, A. and L. J. Chmielewski (2019c, 16-20 Jun).

Randomness of shares versus quality of secret reconstruction in black-and-white visual cryptography.

In L. Rutkowski et al. (Eds.), *Proc. Int. Conf. on Artificial Intelligence and Soft Computing ICAISC 2019*, Volume 11509 of *LNAI*, Zakopane, Poland, pp. 58–69. Springer.

Wikipedia contributors (2021).

Dither — Wikipedia, the free encyclopedia.

url:<https://en.wikipedia.org/w/index.php?title=Dither&oldid=1028207456> [Accessed: 25 Jun 2021].

Key for histograms of p -values

Key for graphs. Sample data: 14=4+4+6: (✗ low) + (✓ good) + (? n/a)

