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Summary. In the screening mammographic examination of large parts of populations
thousands of mammograms are analysed. The Computer Aided Diagnosis methods
available still tend to produce too many false positive (FP) detections with respect to
the number of true positive (TP) detections, which makes it impractical to use such
methods to support the human observer in the analysis of mammograms. In this paper
an attempt has been made to decrease the number of FP errors in the hierarchical
correlation-based cancerous mass detection method by eliminating the images of linear
structures (LSs) from the mammograms. The LSs were detected with an accumulation-
based line detector and the image intensity function in the regions of the LSs was
interpolated with an anisotropic membrane. Examples of images representing typical
detection problems caused by the LSs selected from the MIAS database suggest the
feasibility of the proposed approach.
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1 Introduction

Breast cancer is an important social problem. It can be estimated that in the US
in one out of eight women the breast cancer will develop at some point during
her life [11]; the corresponding number for Poland is one in 16 women [6]. Early
detection of breast cancer makes it possible to apply a sparing treatment and
elongates the survival. Therefore, screening the groups of elevated risk (women
above the age of 50) is justified, which involves the analysis of thousands or mil-
lions of mammograms. The development of Computer Aided Diagnosis (CAD)
methods might help the radiologists in carrying out this task. In less than 10% of
women the result of the screening mammography is positive, that is, it suggests
further investigation. If a CAD system could classify at least a part of 90%
of mammograms as negative prior to the investigation by a human, it would
greatly reduce the workload of radiologists and make it possible for them to pay
more attention to the remaining mammograms, potentially carrying the features
of an abnormality. A CAD system, to be useful in improving the performance
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of a radiologist, should have a sufficiently large specificity at a given sensitivity
level, comparable to that of a human observer. In [17] a discussion has been
presented which leads to the conclusion that there should be not more than
1.5 false positive detections (FP) for each true positive detection (TP). In the
present paper we report our attempt to increase the TP/FP ratio in a cancerous
mass detection algorithm described in [1] by eliminating the linear structures
from the mammograms.

Comprehensive studies of all aspects of breast cancer imaging can be found
in [8]. Reviews of cancerous masses detection and classification can be found
in [11] and to some extent also in [15]. Linear structures (LS) [7, 16], also called
curvi-linear structures [10, 12], are the blood vessels, milk ducts and connective
tissue fibers (Cooper ligaments) in normal mammograms, and the spicules in
pathologic mammograms. Some authors report that their classification should
improve the subsequent detection and classification of the features of cancer,
like in [16]. Others, like in [12], state that the attenuation of the LSs improves
the results of analysis. The LSs related to cancerous masses are spicules; other
LSs interfere in the detection of masses. In this study a mass detection algo-
rithm using no information on the spicules is used, so we go along the line of
elimination of all the LSs without their classification.

2 Detection of cancerous masses

The cancerous masses were detected with a multiscale template matching algo-
rithm reported previously in [1]. A template is an auxiliary image representing
the model brightness distribution in a mass. The template is shifted across the
image and the similarity measure between the template and the corresponding
window of the image is calculated. As the similarity measure the correlation
coefficient was used, as expressed by the equation

c(T, I) =

∑N
j=1(tj − t)(ij − i)√∑N

j=1(tj − t)2
√∑N

j=1(ij − i)2
, (1)

where T is a template and I is a window in the image, both containing N pixels
numbered consecutively, tj is a grey level in a template pixel, ij is a grey level
in a window pixel, and t, i are the mean grey levels of the template and the
window, respectively. The correlation coefficient belongs to an interval 〈−1, 1〉
and depends only on the relation of shapes of the template and the window,
not on their grey scale. A template with a hemispherical brightness was used:

tR(x, y) =
√
R2 − x2 − y2 for x2 + y2 ≤ R2 , (2)

where x, y are pixel coordinates in a local coordinate system of the template
having origin at the template centre. As in [1], the the Fast Fourier Transform
was used and the correlation was calculated in the Fourier domain, while unlike
in [1], the template was circular.
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As advised in [14] and according to the previous experience [1], the template
matching combined with a multiscale approach was used. The templates with
8 radii from 36 to 108 pixels, differing by a factor of

√
2, were used. To reduce

the amount of calculations, images in four scales were analysed: 1:1, 1:2, 1:4
and 1:8, with two radii in each: 36 and 51 pixels. Templates with such radii
detect objects having radii of 30-43 pixels and 43-60 pixels, respectively. The
multiscale approach was designed according to the observation made in [9] that
instead of using a template with two times larger radius one could use an image
with two times smaller linear dimensions, obtaining approximately the same
results. Combining such a resolution pyramid with FFT calculations mentioned
above reduced the calculation time for a single mammogram to less than 10 min
on a 2 GHz computer. At the image resolution of 50 µm/pix, the masses of
diameters from 3 to 48 mm could be detected.

The final detection result was calculated by thresholding the resulting cor-
relation maps at the subsequent pyramid levels with a single threshold and
aggregating the partial results received onto the full scale level 1:1.

3 Linear structures

3.1 Detection

The method used for detection of the linear structures was the evidence
accumulation-based line detection algorithm already described in sufficient de-
tail in [4, 5], and previously in [3]. In the present application, linear structures
of width between 2 and 16 pixels were sought. Structures having the line in-
tensity maxima smaller than 0.1 of the maximum intensity of the strongest LS
in the given image were neglected and the ridges of the remaining, stronger
structures were followed (some less important details were omitted for the sake
of compactness; for details see [4], p. 360 or [5], Chapt. 6.3.6 and 6.8).

The line detector used finds the line width w0 as the distance between the
loci of maximum image intensity gradients, as is typically done by detectors.
However, the actual width w of the LS in the image is larger. Therefore, the
width found was multiplied by a factor slightly larger than one: w = 1.1w0.

The primary results of the detection process for each mammogram were
the binary masks of the LSs. In the LS elimination process described in the
following Section, also the the map of the directions of the LSs and the relative
distance transform, defined further, were used. These were easy to generate as
the byproduct of the detection process, due to that each detected pixel is related
to its respective pixel in the skeleton of the line, in which the local line width
and direction has been stored by the line detection algorithm. The direction
is simply copied from that stored in the relative skeleton pixel. The relative
distance transform in a given pixel of the LS is the ratio of its distance from
the line edge to the distance of its relative skeleton pixel from the edge, equal
to a half of the width.
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Fig. 1. Examples of masks used for interpolation in the membrane spanning algo-
rithm. The sum of elements is divisible by four to make it easier to construct the
isotropic mask. (a) Isotropic membrane; (b) membrane stronger in the W-E direction;
(c) membrane stronger in the SW-NE direction.

3.2 Elimination

A linear structure in the breast projects itself on the mammogram together
with other tissues and manifests itself as a bright object in the image. The
image intensity function of a mammogram can be split as follows

I(x, y) = I0(x, y) + ILS(x, y) , (3)

where I is the image intensity of the mammogram, x, y are coordinates, I0 is
the intensity without the LS, and ILS is the intensity of the LS alone.

The possible approaches to the elimination of the LSs are: 1o subtraction
of the ILS component of the intensity from the image, 2o replacement of the
image intensity in the regions occupied by the LSs with the intensity I0, and
3o suppression of the component ILS so that the resulting intensity is closer
to I0. The first approach necessitates for the model of the LS. The images
of the LSs are very different so this approach seems unrealistic. The second
approach makes it necessary to know I0 in the regions of the LSs. In the third
approach it is assumed that the method of suppressing the LSs is known. For
example, in [12] the LSs were attenuated by averaging the image intensity in
the regions occupied by the LSs in a 11× 11 pixels window.

In this paper the second approach was used. The image intensity I0 without
the LSs in the regions of the LSs was estimated as the interpolation of the im-
age intensity from outside the regions occupied by the LSs. This was done by
spanning a membrane across the regions of the LSs. An iterative algorithm was
used, as described in [2], Chapter 6.2.1. In the present application that algo-
rithm becomes radically simplified to finding the averages of the neighbouring
pixels, with a 4-neighbourhood. This corresponds to the iterative convolution
of the image with the mask shown in Fig. 1a, until the result stabilizes. The
intermediate calculations were performed in the floating-point arithmetic. The
method was similar to that used in [12] in that the convolution equivalent to
averaging was used, while the main difference was that the convolution was
repeated until the surface received stabilized.

Spanning an isotropic membrane across the regions occupied by the LSs
yields undesirable results where the linear structure crosses the regions having
different signs of the curvature, that is, the “hills” and “valleys”, as shown in
Fig. 2a and b. To reduce the saddles near the ridges and bottoms an anisotropic
membrane was used. The direction of larger stiffness was across the LS, as
found by the line detector. These directions were rounded to four characteristic
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Fig. 2. Using the anisotropic membrane to interpolate an LS crossing a “hill” in the
image intensity function. (a) Original image intensity: detected LS along Ox, ‘hill”
along Oy; (b) LS eliminated with the isotropic membrane: saddles present in the
ridges and bottoms of the intensity graph; (c) LS eliminated with the anisotropic
membrane, stronger in the direction across the LS: saddles greatly reduced.

directions differing by 45◦, and for each pixel in the LS the appropriate mask
was used. The examples of the masks are shown in Fig. 1b and c and the result
of using this approach can be seen in Fig. 2c. The ratio of the stiffnesses in the
perpendicular directions was close to 10, which was enough to receive a clear
improvement in relation to the described effect.

In the final algorithm each interpolated surface was inserted into the image
intensity function with a narrow transient stripe in which the two functions were
gradually interchanged by linear weighting. The weighting functions used could
be easily calculated from the relative distance transform generated by the line
detection algorithm. The stripe width corresponded to the difference between
w and w0, mentioned above.

According to the multiscale organisation of the correlation-based mass detec-
tor, the line elimination process was also performed in four scales. However, the
line detection was done only in the scale 1:4 and its results were appropriately
recalculated to the remaining three scales.

4 Examples of results

The feasibility of the method has been tested on the images from the MIAS
database [13]. The results for two images have been selected for presentation
due to that the correlation method yields unsatisfactory results in these images
because of linear structures passing over cancerous masses. Detection results
before and after the elimination have been shown in Fig. 3 and Table 1. The
detected masses have been marked with circles according to the shape of the
templates used. The radii of the circles correspond to the radii of the masks,
recalculated to the full scale 1:1, for which the maximum correlation reached
the threshold. Thresholds used were equal to correlations shown in Table 1.

It can be observed that in the examples shown: 1o the correlation after the
elimination of the LSs grew, 2o the number of false positive detections decreased
(effect visible in the window shown only for mdb124rm), and 3o the location
of the detected mass became closer to that determined by a human observer.
A cautious conclusion can be drawn from these observations that it could be
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Fig. 3. Examples of results – windows 800 × 800 of mammograms from the MIAS
database: (1) mdb124rm, upper left corner at (1340, 24); (2) mdb264rm, upper left corner
at (2156, 836). (a) Original images; (b) images with the LS eliminated; (c) relative dis-
tance transforms of the LSs. The black circles indicate the detected cancerous masses,
in the original and processed images, respectively, and the white contours indicate the
shape of the masses marked by a human observer.
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Table 1. Change of parameters of the masses in the mammograms shown in Fig. 3.

before elimination after elimination

mammogram correlation radius [pix] correlation radius [pix]

mdb124rm 0.63 36 0.76 72
mdb264rm 0.76 288 0.80 204

possible to increase the threshold used in the detection of cancerous masses,
which in effect should reduce the number of false positive detections at a given
level of true positive detections, thus improving the relation of specificity to
sensitivity of the method.

5 Conclusion and further work

To reduce the number of false positive detections while maintaining the number
of true positive detections in the cancerous mass detection method applied to
mammograms, the elimination of linear structures was applied. The mass detec-
tion method used was the the hierarchical correlation-based detection described
previously in [1]. The linear structures were detected with the accumulation-
based line detector [3, 4, 5] and the elimination was performed by interpolation
of the image intensity in the regions of the LSs with an anisotropic membrane
being a simple derivation of the model described in [2].

The results for images representing typical detection problems caused by
the LSs passing over cancerous masses, selected from the MIAS mammographic
database [13], suggest the feasibility of the proposed approach. The trials with
a large set of benchmark mammographic images are necessary to validate the
proposed method. Preliminary results of such trials being carried out at present
with the entire MIAS database are promising.
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